Search results for "Long-range interaction"

showing 10 items of 24 documents

Recent Advances of Spin Crossover Research

2004

Thermal spin transition (spin crossover), one of the most fascinating dynamic electronic structure phenomena occurring in coordination compounds of third row transition metal ions, mostly of iron(II), iron(III) and cobalt(II) with critical ligand field strengths competing with the spin pairing energy, has attracted increasing attention by many research groups. One of the reasons is the promising potential for practical applications. In this chapter we intend to cover essential recent work, primarily accomplished within the European research network on "Thermal and Optical Switching of Molecular Spin States (TOSS)". New spin crossover compounds and their thermal spin transition behaviour, al…

NUCLEAR INELASTIC-SCATTERINGLigand field theorySpin statescooperativitySpin transitionElectronic structurephysical propertiespressurespin crossoverSpin crossoverINTRAMOLECULAR MAGNETIC INTERACTIONlight effectsIRON(II) COMPLEXESSpin-½TRANSITION MOLECULAR MATERIALSLONG-RANGE INTERACTIONCondensed matter physicsChemistrySpin engineeringISING-LIKE SYSTEMSPairingPHOTOINDUCED PHASE-TRANSITIONSTATE TRAPPING LIESSTCondensed Matter::Strongly Correlated ElectronsX-RAY-STRUCTURELIGHT-INDUCED BISTABILITY
researchProduct

Fractional differential calculus for 3D mechanically based non-local elasticity

2011

This paper aims to formulate the three-dimensional (3D) problem of non-local elasticity in terms of fractional differential operators. The non-local continuum is framed in the context of the mechanically based non-local elasticity established by the authors in a previous study; Non-local interactions are expressed in terms of central body forces depending on the relative displacement between non-adjacent volume elements as well as on the product of interacting volumes. The non-local, long-range interactions are assumed to be proportional to a power-law decaying function of the interaction distance. It is shown that, as far as an unbounded domain is considered, the elastic equilibrium proble…

Non-local elasticityCentral marchaud fractional derivativeComputer Networks and CommunicationsComputational MechanicsTime-scale calculusElasticity (physics)Non localFractional calculusLong-range interactionControl and Systems EngineeringCalculusFractional differentialSettore ICAR/08 - Scienza Delle CostruzioniFractional differential calculuFractional finite differenceMathematics
researchProduct

Non-local finite element method for the analysis of elastic continuum with long-range central interactions.

2009

In this paper the Finite Element Method (FEM) for the mechanically-based non-local elastic continuum model is proposed. In such a model non-adjacent elements are considered mutually interacting by means of central body forces that are monotonically decreasing with their interdistance and proportional to the product of the interacting volume elements. The resulting governing equation is an integro-differential one and for such a model both kinematical and mechanical boundary conditions are exactly coincident with the classical boundary conditions of the continuum mechanics. The solution of the integro-differential problem is framed in the paper by the finite element method. Finally, the solu…

Non-local elasticityfinite element methodlong-range interactionSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

A Wavelet-Galerkin Method for a 1D Elastic Continuum with Long- Range Interactions

2009

An elastic continuum model with long-range forces is addressed in this study. The model stems from a physically-based approach to non-local mechanics where non-adjacent volume elements exchange mutual central forces that depend on the relative displacement and on the product between the interacting volume elements; further, they are taken as proportional to a material dependent and distance-decaying function. Smooth-decay functions lead to integrodifferential equations while hypersingular, fractional-decay functions lead to a fractional differential equation of Marchaud type. In both cases the governing equations are solved by the Galerkin method with different sets of basis functions, amon…

Non-local elasticityweak formulation of elasticitylong-range interactionfractional calculusSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Mechanically Based Nonlocal Euler-Bernoulli Beam Model

2014

AbstractThis paper presents a nonlocal Euler-Bernoulli beam model. It is assumed that the equilibrium of a beam segment is attained because of the classical local stress resultants, along with long-range volume forces and moments exchanged by the beam segment with all the nonadjacent beam segments. Elastic long-range volume forces/moments are considered, built as linearly depending on the product of the volumes of the interacting beam segments and on generalized measures of their relative motion, based on the pure deformation modes of the beam. Attenuation functions governing the space decay of the nonlocal effects are introduced. The motion equations are derived in an integro-differential …

PhysicsDeformation (mechanics)Mechanical EngineeringAttenuationEquations of motionSpace (mathematics)VibrationLong-range interactionClassical mechanicsNonlocal elasticityEuler-Bernoulli beamStress resultantsPhysics::Accelerator PhysicsFree vibrationsSettore ICAR/08 - Scienza Delle CostruzioniStaticsStaticBeam (structure)
researchProduct

Elastic waves propagation in 1D fractional non-local continuum

2008

Aim of this paper is the study of waves propagation in a fractional, non-local 1D elastic continuum. The non-local effects are modeled introducing long-range central body interactions applied to the centroids of the infinitesimal volume elements of the continuum. These non-local interactions are proportional to a proper attenuation function and to the relative displacements between non-adjacent elements. It is shown that, assuming a power-law attenuation function, the governing equation of the elastic waves in the unbounded domain, is ruled by a Marchaud-type fractional differential equation. Wave propagation in bounded domain instead involves only the integral part of the Marchaud fraction…

PhysicsNon-local elasticityContinuum mechanicsWave propagationDifferential equationMathematical analysisCondensed Matter PhysicsFractional calculuDispersion of elastic waves; Lattice models; Long-range interactions; Non-local elasticity; Fractional calculus; Fractional power lawPower lawAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsFractional calculusLattice modelLove waveLong-range interactionIngenieurwissenschaftenDispersion of elastic waveBounded functionddc:620Settore ICAR/08 - Scienza Delle CostruzioniLongitudinal waveFractional power law
researchProduct

Non-local stiffness and damping models for shear-deformable beams

2013

This paper presents the dynamics of a non-local Timoshenko beam. The key assumption involves modeling non-local effects as long-range volume forces and moments mutually exerted by non-adjacent beam segments, that contribute to the equilibrium of any beam segment along with the classical local stress resultants. Elastic and viscous long-range volume forces/moments are endowed in the model. They are built as linearly depending on the product of the volumes of the interacting beam segments and on generalized measures of their relative motion, based on the pure deformation modes of the beam. Attenuation functions governing the space decay of the non-local effects are introduced. Numerical resul…

PhysicsTimoshenko beam theoryNon-local elasticityMechanical EngineeringAttenuationRelative motionGeneral Physics and AstronomyStiffnessMechanicsNon localTimoshenko beamNon-local dampingLong-range interactionClassical mechanicsShear (geology)Mechanics of MaterialsStress resultantsmedicineGeneral Materials Sciencemedicine.symptomSettore ICAR/08 - Scienza Delle CostruzioniBeam (structure)European Journal of Mechanics - A/Solids
researchProduct

On the vibrations of a mechanically based non-local beam model

2012

The vibration problem of a Timoshenko non-local beam is addressed. The beam model involves assuming that the equilibrium of each volume element is attained due to contact forces and long-range body forces exerted, respectively, by adjacent and non-adjacent volume elements. The contact forces result in the classical Cauchy stress tensor while the long-range forces are taken as depending on the product of the interacting volume elements and on their relative displacement through a material-dependent distance-decaying function. To derive the motion equations and the related mechanical boundary conditions, the Hamilton's principle is applied The vibration problem of a Timoshenko non-local beam …

Timoshenko beam theoryBody forceNon-local elasticityGeneral Computer ScienceGeneral Physics and AstronomyContact forceLong-range interactionsymbols.namesakeFree vibrations; Hamilton's principle; Long-range interactions; Non-local elasticity; Timoshenko beam theoryGeneral Materials ScienceHamilton's principleVolume elementPhysicsCauchy stress tensorEquations of motionFree vibrationGeneral ChemistryMechanicsComputational MathematicsTimoshenko beam theoryClassical mechanicsHamilton's principleMechanics of MaterialssymbolsSettore ICAR/08 - Scienza Delle CostruzioniBeam (structure)Computational Materials Science
researchProduct

Finite element method for a nonlocal Timoshenko beam model

2014

A finite element method is presented for a nonlocal Timoshenko beam model recently proposed by the authors. The model relies on the key idea that nonlocal effects consist of long-range volume forces and moments exchanged by non-adjacent beam segments, which contribute to the equilibrium of a beam segment along with the classical local stress resultants. The long-range volume forces/moments are linearly depending on the product of the volumes of the interacting beam segments, and their relative motion measured in terms of the pure beam deformation modes, through appropriate attenuation functions governing the spatial decay of nonlocal effects. In this paper, the beam model is reformulated wi…

Timoshenko beam theoryFinite element methodApplied MathematicsGeneral EngineeringStiffnessPure deformation modeComputer Graphics and Computer-Aided DesignFinite element methodLong-range interactionClassical mechanicsVariational formulationBending stiffnessStress resultantsNonlocal Timoshenko beammedicineDirect stiffness methodmedicine.symptomAnalysisBeam (structure)Stiffness matrixMathematics
researchProduct

A mechanically based approach to non-local beam theories

2011

A mechanically based non-local beam theory is proposed. The key idea is that the equilibrium of each beam volume element is attained due to contact forces and long-range body forces exerted, respectively, by adjacent and non-adjacent volume elements. The contact forces result in the classical Cauchy stress tensor while the long-range forces are modeled as depending on the product of the interacting volume elements, their relative displacement and a material-dependent distance-decaying function. To derive the beam equilibrium equations and the pertinent mechanical boundary conditions, the total elastic potential energy functional is used based on the Timoshenko beam theory. In this manner, t…

Timoshenko beam theoryPhysicsBody forceNon-local elasticityCauchy stress tensorMechanical EngineeringElastic energyTotal elastic potential energy functionalCondensed Matter PhysicsContact forceLong-range interactionTimoshenko beam theoryClassical mechanicsMechanics of MaterialsMechanics of MaterialGeneral Materials ScienceMaterials Science (all)Boundary value problemVolume elementBeam (structure)Civil and Structural EngineeringInternational Journal of Mechanical Sciences
researchProduct