Search results for "Low Mass"

showing 6 items of 76 documents

The early B-type star Rho Oph A is an X-ray lighthouse

2017

We present the results of a 140 ks XMM-Newton observation of the B2 star $\rho$ Ophiuchi A. The star has exhibited strong X-ray variability: a cusp-shaped increase of rate, similar to that which we partially observed in 2013, and a bright flare. These events are separated in time by about 104 ks, which likely corresponds to the rotational period of the star (1.2 days). Time resolved spectroscopy of the X-ray spectra shows that the first event is caused by an increase of the plasma emission measure, while the second increase of rate is a major flare with temperatures in excess of 60 MK ($kT\sim5$ keV). From the analysis of its rise, we infer a magnetic field of $\ge300$ G and a size of the f…

Rotation periodStars: activity010504 meteorology & atmospheric sciencesMagnetismAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHot spot (veterinary medicine)Astrophysics01 natural sciencesSpectral linelaw.inventionStars: early-typelaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsX-rays: star010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Stars: magnetic fieldStarspotStars: individual: Rho OphiuchiInstitut für Physik und AstronomieAstronomy and AstrophysicsRadiusAstronomy and AstrophysicAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceStarspotAstrophysics::Earth and Planetary AstrophysicsLow MassAstrophysics - High Energy Astrophysical PhenomenaFlare
researchProduct

Mass and width of the σ meson at finite density

2003

Abstract The ππ interaction in the σ channel is studied at finite densities in a chiral unitary approach. We present some results on the σ meson pole position. We also analyze the (γ, ππ) reaction on nucleons and nuclei in the kinematical region where the scalar isoscalar ππ scattering amplitude is influenced by the low mass of the σ in nuclei, and has a large enhancement close to the position of the σ pole.

Scattering amplitudeNuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsMesonIsoscalarNuclear TheoryScalar (physics)Nuclear ExperimentLow MassNucleonNuclear Physics A
researchProduct

Testing jet geometries and disc-jet coupling in the neutron star LMXB 4U 0614 + 091 with the internal shocks model

2020

Multi-wavelength spectral energy distributions of Low Mass X-ray Binaries in the hard state are determined by the emission from a jet, for frequencies up to mid-infrared, and emission from the accretion flow in the optical to X-ray range. In the last years, the flat radio-to-mid-IR spectra of Black Hole (BH) X-ray binaries was described using the internal shocks model, which assumes that the fluctuations in the velocity of the ejecta along the jet are driven by the fluctuations in the accretion flow, described by the X-ray Power Density Spectrum (PDS). In this work we attempt to apply this model for the first time to a Neutron Star (NS) LMXB, i.e. 4U 0614+091. We used the multi-wavelength d…

Shock waveAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesSpectral linestars: jetsX-rays: binariesstars: neutronaccretion0103 physical sciencesEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsSpectral densityAstronomy and AstrophysicsConical surfaceshock wavesaccretion discsAccretion (astrophysics)Neutron starSpace and Planetary Scienceaccretion accretion discsAstrophysics - High Energy Astrophysical PhenomenaLow Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Gaia-ESO survey: Discovery of a spatially extended low-mass population in the Vela OB2 association

2015

The nearby (distance~350-400 pc), rich Vela OB2 association, includes $\gamma^2$ Velorum, one of the most massive binaries in the solar neighbourhood and an excellent laboratory for investigating the formation and early evolution of young clusters. Recent Gaia-ESO survey observations have led to the discovery of two kinematically distinct populations in the young (10-15 Myr) cluster immediately surrounding $\gamma^2$ Velorum. Here we analyse the results of Gaia-ESO survey observations of NGC 2547, a 35 Myr cluster located two degrees south of $\gamma^2$ Velorum. The radial velocity distribution of lithium-rich pre-main sequence stars shows a secondary population that is kinematically distin…

Stellar populationStars: Individual: Gamma2 velorumPopulationFOS: Physical sciencesTechniques: SpectroscopicAstrophysicsVela01 natural sciencesOpen clusters and associations: Individual: NGC 25470103 physical sciencesCluster (physics)educationStars: Pre-main sequence010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QBOpen clusters and associations: Individual: Vela OB2Physicseducation.field_of_study010308 nuclear & particles physicsAstronomy and Astrophysicsstars: formation; stars: pre-main sequence; techniques: spectroscopicAstronomy and AstrophysicRadial velocityStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceStars: FormationLow MassOpen clusters and associations: Individual: NGC 2547; Open clusters and associations: Individual: Vela OB2; Stars: Formation; Stars: Individual: Gamma2 velorum; Stars: Pre-main sequence; Techniques: Spectroscopic; Astronomy and Astrophysics; Space and Planetary Science
researchProduct

Simultaneous radio and X-ray observations of the low-mass X-ray binary GX 13+1

2004

We present the results of two simultaneous X-ray/radio observations of the low-mass X-ray binary GX 13+1, performed in July/August 1999 with the Rossi X-ray Timing Explorer and the Very Large Array. In X-rays the source was observed in two distinct spectral states; a soft state, which had a corresponding 6 cm flux density of ~0.25 mJy, and a hard state, which was much brighter at 1.3-7.2 mJy. For the radio bright observation we measured a delay between changes in the X-ray spectral hardness and the radio brightness of ~40 minutes, similar to what has been found in the micro-quasar GRS 1915+105. We compare our results with those of GRS 1915+105 and the atoll/Z-type neutron star X-ray binarie…

Very large arrayPhysicsBrightnessAstrophysics (astro-ph)X-rayX-ray binaryFOS: Physical sciencesBinary numberAstronomy and AstrophysicsAstrophysicsAstrophysicsaccretion accretion disks / stars: individual: GX 13+1 / stars: neutron / ISM: jets and outflows / X-rays: binaries / radio continuum: starsNeutron starSoft stateSpace and Planetary ScienceLow Mass
researchProduct

New orbital ephemerides for the dipping source 4U 1323-619: Constraining the distance to the source

2016

4U 1323-619 is a low mass X-ray binary system that shows type I X-ray bursts and dips. The most accurate estimation of the orbital period is 2.941923(36) hrs and a distance from the source that is lower than 11 kpc has been proposed. We aim to obtain the orbital ephemeris, the orbital period of the system, as well as its derivative to compare the observed luminosity with that predicted by the theory of secular evolution. We took the advantage of about 26 years of X-ray data and grouped the selected observations when close in time. We folded the light curves and used the timing technique, obtaining 12 dip arrival times. We fit the delays of the dip arrival times both with a linear and a quad…

neutron X-rays: binaries X-rays: stars ephemerides stars: individual: 4U 1323-619 [stars]010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesLuminositySettore FIS/05 - Astronomia E Astrofisica0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)stars: neutron X-rays: binaries X-rays: stars ephemerides stars: individual: 4U 1323-619Astronomy and AstrophysicsLight curveOrbital periodGalaxyNeutron starSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsLow MassAstrophysics - High Energy Astrophysical Phenomena
researchProduct