Search results for "Luminosity"

showing 10 items of 560 documents

GW190521: A Binary Black Hole Merger with a Total Mass of 150  M⊙

2020

LIGO Scientific Collaboration and Virgo Collaboration: et al.

AstronomyGeneral Physics and Astronomydetector: networkAstrophysicsGravitational waves; Binary black holes Intermediate mass black holes01 natural sciencesGeneral Relativity and Quantum Cosmologygravitational waves; black holesGW190521 BBHIntermediate mass black holesLIGO10. No inequalityQCQBSettore FIS/01astro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPAIR-INSTABILITYSettore FIS/05Physicsstatistical analysis: BayesianSupernovaPhysical SciencesPhysique des particules élémentaires[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodBinary black holes Intermediate mass black holesgr-qcPhysics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Physics and Astronomy(all)Gravitation and AstrophysicsGravitational wavespair-instabilitySettore FIS/05 - Astronomia e AstrofisicaBinary black holeBinary black holesNeutron starsgravitational wavessupernova0103 physical sciences010306 general physicsLuminosity distanceSTFCGW190521Science & Technology9. Industry and infrastructureGravitational wavegravitational radiationRCUKblack hole: massgravitational waves black holegravitational radiation detectorLIGORedshiftBlack holewave: modelVIRGOblack hole: binaryIntermediate-mass black holegravitational radiation: emissionBBH[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Does the Sun Shine byppor CNO Fusion Reactions?

2002

We show that solar neutrino experiments set an upper limit of 7.8% (7.3% including the recent KamLAND measurements) to the fraction of energy that the Sun produces via the CNO fusion cycle, which is an order of magnitude improvement upon the previous limit. New experiments are required to detect CNO neutrinos corresponding to the 1.5% of the solar luminosity that the standard solar model predicts is generated by the CNO cycle.

Astrophysics and AstronomyAstrofísica nuclearCNO cycleNuclear TheoryPhysics::Instrumentation and DetectorsSolar neutrinoSolar luminosityFOS: Physical sciencesGeneral Physics and AstronomyAstrophysicsAstrophysics7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsNuclear fusionNuclear Experiment (nucl-ex)010306 general physicsNeutrino oscillationNuclear ExperimentAstrophysics::Galaxy AstrophysicsPhysicsStandard solar modelReaccions nuclears010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaHigh Energy Physics - PhenomenologyPhysics::Space PhysicsNuclear astrophysicsHigh Energy Physics::ExperimentNuclear reactionsNeutrinoOrder of magnitudePhysical Review Letters
researchProduct

OBSERVATION OF THE TeV GAMMA-RAY SOURCE MGRO J1908+06 WITH ARGO-YBJ

2012

The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray…

Astrophysics::High Energy Astrophysical PhenomenaAstrophysicsgeneral – pulsars: individual (MGRO J1908+06) [gamma rays]7. Clean energy01 natural sciencesPulsar wind nebulaLuminositySettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicspulsarPhysics010308 nuclear & particles physicsgamma rays: general – pulsars: individual (MGRO J1908+06)Settore FIS/01 - Fisica SperimentaleGamma rayAstronomy and Astrophysics(MGRO J1908+06)Air showerCrab Nebula13. Climate actionSpace and Planetary Sciencegamma rayMilagroHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

High redshift galaxies in the ALHAMBRA survey. II. Strengthening the evidence of bright-end excess in UV luminosity functions at 2.5 <= z<= 4.5 by PD…

2018

Context. Knowing the exact shape of the ultraviolet (UV) luminosity function (LF) of high-redshift galaxies is important to understand the star formation history of the early Universe. However, the uncertainties, especially at the faint and bright ends of the LFs, remain significant. Aims. In this paper, we study the UV LF of redshift z = 2:5 4.5 galaxies in 2.38 deg of ALHAMBRA data with I ≤ 24. Thanks to the large area covered by ALHAMBRA, we particularly constrain the bright end of the LF. We also calculate the cosmic variance and the corresponding bias values for our sample and derive their host dark matter halo masses. Methods.We have used a novel methodology based on redshift and magn…

Astrophysics::High Energy Astrophysical PhenomenaContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityhigh-redshift [Galaxies]galaxies: high-redshift0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLuminosity function (astronomy)Physics[PHYS]Physics [physics]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsCosmic varianceevolution [Galaxies]Astrophysics - Astrophysics of Galaxiesluminosity function [Galaxies]RedshiftGalaxyDark matter halogalaxies: luminosity functionSpace and Planetary Sciencemass functionMass functiongalaxies: evolution[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371

2015

We analyse all available X-ray observations of X1822-371 made with XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to constrain the spectral shape of the continuum emission well. We use the model already proposed for this source, consisting of a Comptonised component absorbed by interstellar matter and partially absorbed by local neutral matter, and we added a Gaussian feature in absorption at $\sim 0.7$ keV. This addition significantly improves the fit and flattens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in absorption as a cyclotron resonant scattering …

Astrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsX-rays: generalLuminositysymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaAccretion accretion diskAstrophysics::Solar and Stellar AstrophysicsAbsorption (logic)Continuum (set theory)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Stars: magnetic fieldStars: individual: X1822-371Astronomy and AstrophysicsRadiusAstronomy and AstrophysicX-rays: binarieInterstellar mediumNeutron starSpace and Planetary ScienceEddington luminositysymbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

A faint outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021 in NGC 6440

2018

SAX J1748.9-2021 is an accreting X-ray millisecond pulsar observed in outburst five times since its discovery in 1998. In early October 2017, the source started its sixth outburst, which lasted only ~13 days, significantly shorter than the typical 30 days duration of the previous outbursts. It reached a 0.3-70 keV unabsorbed peak luminosity of $\sim3\times10^{36}$ erg/s. This is the weakest outburst ever reported for this source to date. We analyzed almost simultaneous XMM-Newton, NuSTAR and INTEGRAL observations taken during the decaying phase of its 2017 outburst. We found that the spectral properties of SAX J1748.9-2021 are consistent with an absorbed Comptonization plus a blackbody comp…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminositySettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAccretion accretion disc010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MillisecondAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicCoronaX-rays: binarieNeutron starX-Rays: galaxies -X-rays: individuals: SAX J1748.9-2021Space and Planetary ScienceElectron temperaturebinaries; X-Rays: galaxies -X-rays: individuals: SAX J1748.9-2021; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion discs; X-rays]Astrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct

Updated orbital ephemeris of the ADC source X 1822-371: a stable orbital expansion over 40 years

2019

The source X 1822-371 is an eclipsing compact binary system with a period close to 5.57 hr and an orbital period derivative $\dot{P}_{\rm orb}$ of 1.51(7)$\times 10^{-10}$ s s$^{-1}$. The very large value of $\dot{P}_{\rm orb}$ is compatible with a super-Eddington mass transfer rate from the companion star, as suggested by X-ray and optical data. The XMM-Newton observation taken in 2017 allows us to update the orbital ephemeris and verify whether the orbital period derivative has been stable over the last 40 yr. We added to the X-ray eclipse arrival times from 1977 to 2008 two new values obtained from the RXTE and XMM-Newton observations performed in 2011 and 2017, respectively. We estimate…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsDerivativeEphemeris01 natural sciencesEclipseeclipsesLuminosityOrb (astrology)stars: neutronX-rays: binariesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSpin (physics)ephemerides010303 astronomy & astrophysicsEclipsePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsstars: individual: X 1822-371Astronomy and AstrophysicsOrbital periodEphemerideOrbitSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Indications of non-conservative mass-transfer in AMXPs

2019

Context. Since the discovery of the first Accreting Millisecond X-ray Pulsar SAX J1808.4-3658 in 1998, the family of these sources kept growing on. Currently, it counts 22 members. All AMXPs are transients with usually very long quiescence periods, implying that mass accretion rate in these systems is quite low and not constant. Moreover, for at least three sources, a non-conservative evolution was also proposed. Aims. Our purpose is to study the long term averaged mass-accretion rates in all the Accreting Millisecond X-ray Pulsars discovered so far, to investigate a non-conservative mass-transfer scenario. Methods. We calculated the expected mass-transfer rate under the hypothesis of a con…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)X-rays: starsAstrophysicsCompact star01 natural sciencesLuminositystars: neutronX-rays: binariesPulsarpulsars: general0103 physical sciencesX-rays: individuals: IGR J17498−2921X-rays: individuals: IGR J17498-2921010303 astronomy & astrophysicsX-rays: individuals: XTE J1814−338PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsX-rays: binarieX-rays: individuals: XTE J1814-338Radiation pressureSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Magnetic dipole
researchProduct

The Mouse That Roared: A Superflare from the dMe Flare Star EV Lac Detected by Swift and Konus-Wind

2010

We report on a large stellar flare from the nearby dMe flare star EV Lac observed by the Swift and Konus-Wind satellites and the Liverpool Telescope. It is the first large stellar flare from a dMe flare star to result in a Swift trigger based on its hard X-ray intensity. Its peak f_X from 0.3--100 keV of 5.3x10^-8 erg/cm2/s is nearly 7000 times larger than the star's quiescent coronal flux, and the change in magnitude in the white filter is &gt;4.7. This flare also caused a transient increase in EV Lac's bolometric luminosity (L_bol) during the early stages of the flare, with a peak estimated L_X/L_bol ~3.1. We apply flare loop hydrodynamic modeling to the plasma parameter temporal changes …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsLuminositylaw.inventionSettore FIS/05 - Astronomia E AstrofisicalawIonizationX-raysAstrophysics::Solar and Stellar AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsFlare starAstronomy and Astrophysicsastrofisica fisica stellare stars: activity stars: coronae stars: flare stars: individual: EV Lac stars: late-type X-rays: starsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceMagnitude (astronomy)Plasma parameterStellar PhysicAstrophysics::Earth and Planetary AstrophysicsSuperflareFlare
researchProduct

Evidence of a non-conservative mass transfer for XTE J0929-314

2017

Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (&gt; 100 Hz) pulsations in low mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims. We aim to demonstrate that a conservative mass transfer in this sys…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesStars: individual: XTE J0929-314AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityPulsarMillisecond pulsar0103 physical sciencesX-rays: star010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicGalactic planeOrbital periodX-rays: binarieStars: neutronGalaxyNeutron starSpace and Planetary Scienceindividual: XTE J0929-314; Stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Stars]Astrophysics - High Energy Astrophysical Phenomena
researchProduct