Search results for "MAGNETIC DIPOLE"
showing 10 items of 217 documents
Measurement of the Time-like Pion Transition Form Factor at BESIII
2019
The pion transition form factor is an important input to the dispersive approaches of the Standard Model calculations for the anomalous magnetic moment of the muon. We report the prospects of a first measurement at high momentum transfer in the time-like region performed at BESIII. The aim is to improve the uncertainty of the hadronic light-by-light calculations and to shed light on the BaBar-Belle puzzle in the space-like region.
Lattice calculation of the pion transition form factor π0→γ*γ*
2016
The pion transition form factor for the neutral pion double virtual photon decay is computed in two flavor lattice QCD, extrapolated to the continuum physical point. Implications for the computation of the contribution of hadronic light-by-light scattering to the muon anomalous magnetic moment are discussed.
Lattice Determination of the Anomalous Magnetic Moment of the Muon
2011
We compute the leading hadronic contribution to the anomalous magnetic moment of the muon a_mu^HLO using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. By applying partially twisted boundary conditions we are able to improve the momentum resolution of the vacuum polarisation, an important ingredient for the determination of the leading hadronic contribution. We check systematic uncertainties by studying several ensembles, which allows us to discuss finite size effects and lattice artefacts. The chiral behavior of a_mu^HLO turns out to be non-trivial, especially for small pion masses.
The γγ Physics Program at BESIII
2018
A key motivation for the two-photon physics program of the BESIII collaboration is the need of high precision data on electromagnetic transition form factors as input to the calculations of the contribution of hadronic Light-by-light scattering to the anomalous magnetic moment of the muon. The data collected with the BESIII detector allow to study the momentum dependence of the form factors at small momentum transfers, which is of special relevance for αμ. In this presentation the ongoing measurements of the transition form factors of π0,η and η' mesons, as well as pion pairs, are discussed, and the potential for first double-tagged measurements at BESIII are pointed out.
Position-space approach to hadronic light-by-light scattering in the muon $g-2$ on the lattice
2016
The anomalous magnetic moment of the muon currently exhibits a discrepancy of about three standard deviations between the experimental value and recent Standard Model predictions. The theoretical uncertainty is dominated by the hadronic vacuum polarization and the hadronic light-by-light (HLbL) scattering contributions, where the latter has so far only been fully evaluated using different models. To pave the way for a lattice calculation of HLbL, we present an expression for the HLbL contribution to $g-2$ that involves a multidimensional integral over a position-space QED kernel function in the continuum and a lattice QCD four-point correlator. We describe our semi-analytic calculation of t…
Working group on goldstone boson production and decay
2008
This is the summary of the working group on Goldstone Boson Production and Decay of the Chiral Dynamics Workshop in Mainz, September 1–5, 1997. For the production aspects we discuss π0 and η production in nucleon-nucleon collisions and the behaviour of hadrons in various sum rules. For the decays we present a discussion on various K, η and π decay channels. Other aspects discussed are a new treatment of meson-meson scattering, the light-by-light contribution to the muon anomalous magnetic moment and progress in various aspects of the p 6 generating functional in the mesonic sector.
Pseudoscalar Transition Form Factors from Rational Approximants
2014
The $\pi^0$, $\eta$, and $\eta^\prime$ transition form factors in the space-like region are analyzed at low and intermediate energies in a model-independent way through the use of rational approximants. Slope and curvature parameters as well as their values at infinity are extracted from experimental data. These results are suited for constraining hadronic models such as the ones used for the hadronic light-by-light scattering piece of the anomalous magnetic moment of the muon, and for the mixing parameters of the $\eta - \eta^\prime$ system.
Recent Results on Meson Decays from A2
2018
Light meson decays are used to investigate topics related to fundamental aspects of particle physics. Precision measurements of meson Dalitz decays give input to theoretical evaluations of the Hadronic Light-by-Light contribution (HLbL) to the anomalous magnetic moment of the muon. The pseudoscalar η' decays allow for studies of topics like ππ scattering lengths, effective field theories and fundamental symmetries. The A2 collaboration, using the Crystal Ball/TAPS setup at MAMI, has recently published several high precision results on transition form factors which are related to HLbL. The value obtained for the slope parameter of the π0 electromagnetic (e/m) transition form factor (TFF) is …
Light-by-light scattering sum rules in light of new data
2016
We evaluate the light-quark meson contributions to three exact light-by-light scattering sum rules in light of new data by the Belle Collaboration, which recently has extracted the transition form factors of the tensor meson $f_2(1270)$ as well as of the scalar meson $f_0(980)$. We confirm a previous finding that the $\eta, \eta^\prime$ and helicity-2 $f_2(1270)$ contributions saturate one of these sum rules up to photon virtualities around 1 GeV$^2$. At larger virtualities, our sum rule analysis shows an important contribution of the $f_2(1565)$ meson and provides a first empirical extraction of its helicity-2 transition form factor. Two further sum rules allow us to predict the helicity-0…
The leading hadronic contribution to the running of the Weinberg angle using covariant coordinate-space methods
2018
We present a preliminary study of the leading hadronic contribution to the running of the Weinberg angle $\theta_{\mathrm{W}}$. The running is extracted from the correlation function of the electromagnetic current with the vector part of the weak neutral current using both the standard time-momentum representation method and the Lorentz-covariant coordinate-space method recently introduced by Meyer. Both connected and disconnected contributions have been computed on $N_{\mathrm{f}}=2+1$ non-perturbatively $O(a)$-improved Wilson fermions configurations from the CLS initiative. Similar covariant coordinate-space methods can be used to compute the leading hadronic contribution to the anomalous…