Search results for "MAGNETIC DIPOLE"

showing 10 items of 217 documents

Pressure effect on the magnetism of layered copper(II) compounds with interlayer spacing up to 40.7 Å: Nature of the magnetic ordering

2002

The influence of pressure on the structure and magnetic properties of the layered hybrid compounds Cu 2 (OH) 3 (n-C m H 2 m + 1 CO 2 ), zH 2 O is investigated for m = 10 and 12. It is shown that the distance between magnetic copper(II) layers, up to 40.7 A, is not significantly modified and that the temperature of the ferromagnetic ordering decreases linearly with pressure increase. We present a new analysis of the susceptibility data, based on the scaling theory of phase transitions, which clearly shows up a crossover from a high-temperature two-dimensional (2D) behavior to a 3D regime at about 30 K, around 10 K above the long-range ordering temperature. A model of quantum ferromagnetic la…

Phase transitionMolecular geometryMaterials scienceFerromagnetismchemistryCondensed matter physicsMagnetismchemistry.chemical_elementSpin (physics)CopperQuantumMagnetic dipole–dipole interactionPhysical Review B
researchProduct

Dissecting the Hadronic Contributions to (g−2)μ by Schwinger’s Sum Rule

2018

The theoretical uncertainty of $(g\ensuremath{-}2{)}_{\ensuremath{\mu}}$ is currently dominated by hadronic contributions. In order to express those in terms of directly measurable quantities, we consider a sum rule relating $g\ensuremath{-}2$ to an integral of a photoabsorption cross section. The sum rule, attributed to Schwinger, can be viewed as a combination of two older sum rules: Gerasimov-Drell-Hearn and Burkhardt-Cottingham. The Schwinger sum rule has an important feature, distinguishing it from the other two: the relation between the anomalous magnetic moment and the integral of a photoabsorption cross section is linear, rather than quadratic. The linear property makes it suitable …

PhysicsAnomalous magnetic dipole moment010308 nuclear & particles physicsNuclear TheoryHadronGeneral Physics and AstronomyOrder (ring theory)01 natural sciencesQuadratic equation0103 physical sciencesSum rule in quantum mechanicsNuclear Experiment010306 general physicsNuclear theoryMathematical physicsPhysical Review Letters
researchProduct

HYPERFINE STRUCTURE CONSTANTS OF ENERGETICALLY HIGH-LYING LEVELS OF ODD PARITY OF ATOMIC VANADIUM

2014

High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm–1). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration…

PhysicsArgonVanadiumchemistry.chemical_elementAstronomy and AstrophysicsPlasmaSpectral lineWavelengthchemistryBand-pass filterSpace and Planetary SciencePhysics::Atomic PhysicsAtomic physicsMagnetic dipoleHyperfine structureThe Astrophysical Journal Supplement Series
researchProduct

On the magnetic dipole moment of the153Tb ground state

1981

Temperature dependence of the angular distribution anisotropy of the 212·0 keV gamma-ray following the decay of153Tb oriented in a gadolinium host was measured at temperatures from 16 to 70 mK. Magnetic dipole hyperfine splitting parameter a0 for153Tb(Gd) and magnetic dipole moment of the153Tb ground state were estimated to be ¦a0¦≧1·2×10−5 eV and ¦μ¦≧≧3·1 nuclear magnetons, respectively.

PhysicsBond dipole momentDipoleMagnetic momentCondensed matter physicsNuclear magnetic momentTransition dipole momentGeneral Physics and AstronomyElectric dipole transitionAtomic physicsElectron magnetic dipole momentMagnetic dipoleCzechoslovak Journal of Physics
researchProduct

Hyperfine structure in 5s 4d 3 D ?5snf transitions of87Sr

1993

The hyperfine spectra of the 5s4d3D1-5s20f, 5s4d3D2-5s23f, and 5s 4d3D3-5s32f transitions of87Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction terma5s and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d3D configurations, including theA- andB-factors and a separation of the individuals- andd-electron contri…

PhysicsComparable sizeDiagonalizable matrixBeam laserFine structurePhysics::Atomic PhysicsSpectroscopyMolecular physicsHyperfine structureMagnetic dipoleAtomic and Molecular Physics and OpticsSpectral lineZeitschrift f�r Physik D Atoms, Molecules and Clusters
researchProduct

Field Dependence of the Electron Spin Relaxation in Quantum Dots

2005

Interaction of the electron spin with local elastic twists due to transverse phonons has been studied. Universal dependence of the spin relaxation rate on the strength and direction of the magnetic field has been obtained in terms of the electron gyromagnetic tensor and macroscopic elastic constants of the solid. The theory contains no unknown parameters and it can be easily tested in experiment. At high magnetic field it provides parameter-free lower bound on the electron spin relaxation in quantum dots.

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsSpin polarizationStatistical Mechanics (cond-mat.stat-mech)Relaxation (NMR)General Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyElectronZero field splitting021001 nanoscience & nanotechnology01 natural sciences7. Clean energyElectron magnetic dipole momentSpin magnetic momentQuantum dot0103 physical sciencesSpinplasmonics010306 general physics0210 nano-technologyCondensed Matter - Statistical Mechanics
researchProduct

Measuring the magnetic dipole transition of single nanorods by spectroscopy and Fourier microscopy

2020

International audience; Rare-earth doped nanocrystals possess optical transitions with significant either electric or magnetic dipole characters. They are of considerable interest for understanding and engineering light-matter interactions at the nanoscale with numerous applications in nanophotonics. Here, we study the 5 D 0 → 7 F 1 transition dipole vector in individual NaYF 4 : Eu 3+ nanorod crystals by Fourier and confocal micro-scopies. A single-crystal host matrix leads to narrow emission lines at room temperature that permit separation of the Stark sublevels resulting from the crystal-field splitting. We observe a fully magnetic transition and low variability of the transition dipole …

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnetic dipole transitionNanophotonicsGeneral Physics and AstronomyPhysics::OpticsFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsDipoleCrystal field theory0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]NanorodEmission spectrum010306 general physics0210 nano-technologySpectroscopyMagnetic dipole
researchProduct

Large orbital moments and internal magnetic fields in lithium nitridoferrate(I)

2002

The iron nitridometalates Li2[(Li(1-x)Fe(I)(x))N] display ferromagnetic ordering and spin freezing. Large magnetic moments up to 5.0mu(B)/Fe are found in the magnetization. In Mössbauer effect studies huge hyperfine magnetic fields up to 696 kOe are observed at specific Fe sites. These extraordinary fields and moments originate in an unusual ligand field splitting for those Fe species leading [within local spin density approximation (LSDA)] to a localized orbitally degenerate doublet. Including spin-orbit interaction and strong intra-atomic electron correlation (LDA+SO+U) gives rise to a large orbital momentum.

PhysicsCondensed Matter::Materials ScienceMagnetizationCondensed matter physicsMagnetic momentFerromagnetismSpin polarizationGeneral Physics and AstronomyCondensed Matter::Strongly Correlated ElectronsSpin (physics)Hyperfine structureElectron magnetic dipole momentSpin magnetic moment
researchProduct

Hyperfine-structure measurements on trapped Pb II.

1992

The 6${\mathit{P}}_{3/2}$-6${\mathit{P}}_{1/2}$ magnetic dipole resonance transition in ${\mathrm{Pb}}^{+}$ has been observed by cw laser excitation of an ion cloud stored in a Paul trap and subsequent detection of the fluorescence radiation. From the hyperfine-structure splitting of the spectrum we determine the A factor for the ground state, A(${\mathit{P}}_{1/2}$)=12.967(13) GHz, and the excited state, A(${\mathit{P}}_{3/2}$)=0.580(3) GHz. From a contamination of $^{208}\mathrm{Pb}$ in our sample we derived the $^{207}\mathrm{Pb}^{+}$${\mathrm{\ensuremath{-}}}^{208}$${\mathrm{Pb}}^{+}$ isotope shift [\ensuremath{\Delta}\ensuremath{\nu}=311(14) MHz]. A small electric quadrupole admixture …

PhysicsCondensed matter physicsMagnetic dipole transitionExcited stateQuadrupoleResonanceAtomic physicsGround stateHyperfine structureAtomic and Molecular Physics and OpticsExcitationIonPhysical review. A, Atomic, molecular, and optical physics
researchProduct

Magnetic field and dielectric environment effects on an exciton trapped by an ionized donor in a spherical quantum dot

2017

Abstract Magnetic field and host dielectric environment effects on the binding energy of an exciton trapped by an ionized donor in spherical quantum dot are investigated. In the framework of the effective mass approximation and by using a variational method, the calculations have been performed by developing a robust ten-terms wave function taking into account the different inter-particles correlations and the distortion of symmetry induced by the orientation of the applied magnetic field. The binding and the localization energies are determined as functions of dot size and magnetic field strength. It appears that the variation of magnetic shift obeys a quadratic law for low magnetic fields…

PhysicsCondensed matter physicsMagnetic energyDemagnetizing field02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMagnetic susceptibilityMagnetic fieldMagnetizationParamagnetism0103 physical sciencesDiamagnetismGeneral Materials ScienceElectrical and Electronic Engineering010306 general physics0210 nano-technologyMagnetic dipoleSuperlattices and Microstructures
researchProduct