Search results for "MAGNETIC DIPOLE"
showing 10 items of 217 documents
Lowest- Q2 measurement of the γp → Δ reaction: Probing the pionic contribution
2006
To determine nonspherical angular momentum amplitudes in hadrons at long ranges (low Q^2), data were taken for the p(\vec{e},e'p)\pi^0 reaction in the Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the A1 Collaboration at MAMI. The results for the dominant transition magnetic dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are: M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model}) (10^{-3}/m_{\pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst} +/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/- 0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of constituent quark models but are in reaso…
Complete Electric Dipole Response and the Neutron Skin inPb208
2011
A benchmark experiment on Pb-208 shows that polarized proton inelastic scattering at very forward angles including 0 degrees is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r(skin) = 0.156(-0.021)(+0.025) fm in Pb-208 derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence relevant to the description of neutron stars.
Measurement of the Magnetic Moment of the One-Neutron Halo NucleusB11e
1999
The magnetic moment of ${}^{11}\mathrm{Be}$ ( ${T}_{1/2}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}13.8\phantom{\rule{0ex}{0ex}}\mathrm{s}$) was measured by detecting nuclear magnetic resonance signals in a beryllium crystal lattice. The experimental technique applied to a ${}^{11}{\mathrm{Be}}^{+}$ ion beam from a laser ion source includes in-beam optical polarization, implantation into a metallic single crystal, and observation of rf resonances in the asymmetric angular distribution of the $\ensuremath{\beta}$ decay ( $\ensuremath{\beta}$-NMR). The nuclear magnetic moment $\ensuremath{\mu}{(}^{11}\mathrm{Be})\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}\ensuremath{-}1.6816(8…
Self-consistency conditions for localized magnetic moments in a free electron gas
1969
The self-consistent conditions for a localized magnetic moment in a metal are studied in the case where the density of states of the host metal is free electron like. A method is outlined which in principle allows to determine self-consistently in the Hartree-Fock approximation the relevant parameters of the magnetic ground state of the system. A numerical example is approximately worked out to show how the theory gives reasonable answers in spite of the crudeness of some of the approximations used.
Hyperfine structure measurements of neutral niobium with Fourier transform spectroscopy
2010
Aims. We report on experimental studies of hyperfine structure splitting of neutral niobium.Methods. We used high-resolution Fourier transform spectroscopy to record a spectrum of niobium produced with a hollow cathode discharge lamp in the range of wavenumbers from 10 000 cm-1 to 30 000 cm-1 .Results. The magnetic dipole hyperfine structure constants A were determined for the 109 levels of odd parity by analyzing the profiles of 224 spectral lines. The A values of 57 of these level are reported for the first time.
Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g-2 anomaly.
2014
A massive, but light, Abelian U(1) gauge boson is a well-motivated possible signature of physics beyond the standard model of particle physics. In this Letter, the search for the signal of such a U(1) gauge boson in electron-positron pair production at the spectrometer setup of the A1 Collaboration at the Mainz Microtron is described. Exclusion limits in the mass range of 40 MeV/c^{2} to 300 MeV/c^{2}, with a sensitivity in the squared mixing parameter of as little as ε^{2}=8×10^{-7} are presented. A large fraction of the parameter space has been excluded where the discrepancy of the measured anomalous magnetic moment of the muon with theory might be explained by an additional U(1) gauge …
Standard model higher order corrections to the WW gamma/WWZ vertex
1995
Using the S--matrix pinch technique we obtain to one loop order gauge independent $\gamma W^-W^+$ and $Z W^-W^+$ vertices in the context of the standard model, with all incoming momenta off--shell. We show that the vertices so constructed satisfy simple QED--like Ward identities. These gauge invariant vertices give rise to expressions for the magnetic dipole and electric quadrupole form factors of the $W$ gauge boson, which, unlike previous treatments, satisfy the crucial properties of infrared finiteness and perturbative unitarity.
Alfven QPOs in magnetars in the anelastic approximation
2009
We perform two-dimensional simulations of Alfven oscillations in magnetars, modeled as relativistic stars with a dipolar magnetic field. We use the anelastic approximation to general relativistic magnetohydrodynamics, which allows for an effective suppression of fluid modes and an accurate description of Alfven waves. In addition, we compute Alfven oscillation frequencies along individual magnetic field lines with a semi-analytic approach, employing a short-wavelength approximation. Our main findings are as follows: a) we confirm the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency, as was found in the linear s…
Overview of the hadronic light-by-light contribution to the muon (g−2)
2014
In this talk I review the recent progress on the numerical evaluation of the Hadronic Light-by-Light contribution to the anomalous magnetic moment of the muon and I discuss the role of experimental data on the accuracy of its determination.
Evolution of Mixed Dirac Particles Interacting with an External Magnetic Field
2007
We study in the framework of relativistic quantum mechanics the evolution of a system of two Dirac neutrinos that mix with each other and have non-vanishing magnetic moments. The dynamics of this system in an external magnetic field is determined by solving the Pauli-Dirac equation with a given initial condition. We consider first neutrino spin-flavor oscillations in a constant magnetic field and derive an analytical expression for the transition probability of spin-flavor conversion in the limit of small magnetic interactions. We then investigate ultrarelativistic neutrinos in an transversal magnetic field and derive their wave functions and transition probabilities with no limitation for …