Search results for "MAI"

showing 10 items of 6279 documents

PTEN recruitment controls synaptic and cognitive function in Alzheimer's models

2016

Dyshomeostasis of amyloid-β peptide (Aβ) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimer's disease. Aβ appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued normal synaptic function and cognition in cellular and animal models of Alzheimer's disease. Conversely, transgenic mice that overexpressed PTEN displayed synaptic depression that mimicked and occluded Aβ-induced depression. Mechanistically, Aβ triggers a PDZ-dependent recruitment of PTEN into the postsynaptic compartment. Using a PTEN kno…

0301 basic medicinePrimary Cell CulturePDZ DomainsMice TransgenicMolecular neuroscienceBiologyNeurotransmissionSynaptic TransmissionMice03 medical and health sciences0302 clinical medicineAlzheimer DiseasePostsynaptic potentialmedicineAnimalsPTENGene Knock-In TechniquesAmyloid beta-PeptidesGeneral NeurosciencePTEN PhosphohydrolaseLong-term potentiationmedicine.diseaseRatsDisease Models Animal030104 developmental biologySynaptic fatigueSynaptic plasticitybiology.proteinAlzheimer's diseaseCognition DisordersNeuroscience030217 neurology & neurosurgeryNature Neuroscience
researchProduct

A systematic variant screening in familial cases of congenital heart defects demonstrates the usefulness of molecular genetics in this field

2016

International audience; The etiology of congenital heart defect (CHD) combines environmental and genetic factors. So far, there were studies reporting on the screening of a single gene on unselected CHD or on familial cases selected for specific CHD types. Our goal was to systematically screen a proband of familial cases of CHD on a set of genetic tests to evaluate the prevalence of disease-causing variant identification. A systematic screening of GATA4, NKX2-5, ZIC3 and Multiplex ligation-dependent probe amplification (MLPA) P311 Kit was setup on the proband of 154 families with at least two cases of non-syndromic CHD. Additionally, ELN screening was performed on families with supravalvula…

0301 basic medicineProbandMaleCardiomyopathy22q11.2Disease030204 cardiovascular system & hematologyBioinformatics0302 clinical medicinede-novoEpidemiology3 large registriesGenetics (clinical)zic3 mutationsGeneticsHigh-Throughput Nucleotide Sequencing3. Good healthPedigreeHomeobox Protein Nkx-2.5malformationsFemaleepidemiologyHeart Defects Congenitalmedicine.medical_specialtyGenetic counselingArticle03 medical and health sciences[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyMolecular geneticsGeneticsmedicineHumansMultiplex ligation-dependent probe amplificationGenetic TestingHomeodomain Proteinsdiseasebusiness.industryvariabilityGenetic Variationmedicine.diseaseGATA4 Transcription Factor030104 developmental biologyMutationEtiologycardiovascular defectsbusinessMultiplex Polymerase Chain Reactioncardiomyopathy[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyTranscription Factors
researchProduct

HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond

2018

International audience; Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segre…

0301 basic medicineProbandMaleModels MolecularPotassium Channels[SDV]Life Sciences [q-bio]Medizinmedicine.disease_causeEpileptogenesisMembrane PotentialsEpilepsy0302 clinical medicineHyperpolarization-Activated Cyclic Nucleotide-Gated ChannelsMissense mutationChildGeneticsMutationMiddle AgedPhenotype3. Good healthTransmembrane domainclinical spectrum; epilepsy; HCN1; intellectual disability; ion channelintellectual disabilityChild PreschoolEpilepsy GeneralizedFemaleSpasms InfantileAdultAdolescentCHO CellsBiology03 medical and health sciencesYoung AdultCricetulusHCN1medicineAnimalsHumansGeneralized epilepsyGenetic Association StudiesAgedInfantmedicine.diseaseElectric Stimulationclinical spectrum030104 developmental biologyMutationion channelMutagenesis Site-DirectedepilepsyNeurology (clinical)030217 neurology & neurosurgery
researchProduct

Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis

2020

© The Author(s) 2020.

0301 basic medicineProgrammed cell deathScienceProtein domainGeneral Physics and AstronomyApoptosisBiologyVirus-host interactionsArticleGeneral Biochemistry Genetics and Molecular BiologyFluorescenceCell Line03 medical and health sciences0302 clinical medicineProtein Domainsimmune system diseaseshemic and lymphatic diseasesmedicineHumansAmino Acid SequenceAuthor CorrectionPeptide sequenceneoplasmsMultidisciplinaryVirus–host interactionsQCell MembraneGeneral ChemistryViral proteinsmedicine.diseaseControl cellLymphomaCell biologyVirusTransmembrane domain030104 developmental biologyProto-Oncogene Proteins c-bcl-2Cell cultureApoptosisDoxorubicin030220 oncology & carcinogenesisbiological phenomena cell phenomena and immunityProtein MultimerizationHydrophobic and Hydrophilic InteractionsProteïnesProtein Binding
researchProduct

Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors

2017

Abstract Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styry…

0301 basic medicineProteasesSerine Proteinase InhibitorsStereochemistrymedicine.medical_treatmentClinical BiochemistryPharmaceutical ScienceBiochemistryStyrenesSerine03 medical and health sciencesCatalytic DomainEndopeptidasesDrug DiscoveryEscherichia coliSerinemedicineAnimalsChymotrypsinDrosophila ProteinsHumansMolecular BiologyEnzyme AssaysSerine proteaseProtease030102 biochemistry & molecular biologybiologyBenzoxazinonesChemistryEscherichia coli ProteinsRhomboid proteaseRhomboidOrganic ChemistryMembrane ProteinsTransforming Growth Factor alphaBenzoxazinesDNA-Binding ProteinsMolecular Docking Simulation030104 developmental biologyDocking (molecular)Mutationbiology.proteinMolecular MedicineCattleDrosophilaBioorganic & Medicinal Chemistry Letters
researchProduct

Searching for Chymase Inhibitors among Chamomile Compounds Using a Computational-Based Approach

2018

Inhibitors of chymase have good potential to provide a novel therapeutic approach for the treatment of cardiovascular diseases. We used a computational approach based on pharmacophore modeling, docking, and molecular dynamics simulations to evaluate the potential ability of 13 natural compounds from chamomile extracts to bind chymase enzyme. The results indicated that some chamomile compounds can bind to the active site of human chymase. In particular, chlorogenic acid had a predicted binding energy comparable or even better than that of some known chymase inhibitors, interacted stably with key amino acids in the chymase active site, and appeared to be more selective for chymase than other …

0301 basic medicineProteaseschlorogenic acidlcsh:QR1-502030204 cardiovascular system & hematologyMolecular Dynamics SimulationCrystallography X-RayLigandsBiochemistrylcsh:MicrobiologyArticleSerine03 medical and health sciences0302 clinical medicineChymasesCatalytic DomainHumanschamomilecardiovascular diseases; chamomile; chlorogenic acid; chymase; docking; matricin; molecular dynamics simulations; pharmacophore; Biochemistry; Molecular BiologyEnzyme InhibitorsMolecular Biologychymasechemistry.chemical_classificationBinding SitesbiologypharmacophoreChymaseActive sitemolecular dynamics simulationsmatricinAmino acidcardiovascular diseasesMolecular Docking Simulation030104 developmental biologyEnzymechemistryBiochemistryDocking (molecular)dockingbiology.proteinPharmacophoreBiomolecules
researchProduct

In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive…

2017

Single pass transmembrane proteins make up almost half of the whole transmembrane proteome. Contacts between such bitopic transmembrane proteins are common, and oligomerization of their single transmembrane helix is involved in triggering and regulation of signal transduction across cell membranes. In several recent analyses the distribution of amino acids at helix-helix contact sides has been analyzed, and e.g. a preference of amino acids with small side chains has been identified. Here we select amino acids, amino acid pairings and amino acid motifs, which mediate strong interactions of single-span transmembrane α-helices. Our analysis illustrates an architecture of TM helix dimers that i…

0301 basic medicineProtein Conformation alpha-HelicalDimerAmino Acid MotifsBiophysicsBiologyBiochemistryBordetella pertussisProtein Structure Secondary03 medical and health scienceschemistry.chemical_compoundAmino Acid SequenceAmino Acidschemistry.chemical_classificationCell MembraneMembrane ProteinsCell BiologyTransmembrane proteinAmino acidCrystallographyTransmembrane domain030104 developmental biologyMembrane proteinchemistryProteomeHelixBiophysicsProtein foldingDimerizationBiochimica et biophysica acta. Biomembranes
researchProduct

Insights into the inhibited form of the redox-sensitive SufE-like sulfur acceptor CsdE

2017

17 p.-8 fig.

0301 basic medicineProtein ConformationDimerlcsh:MedicineMolecular DynamicsCrystallography X-RayPhysical ChemistryBiochemistryDEAD-box RNA HelicasesMolecular dynamicschemistry.chemical_compoundComputational ChemistryNucleophileBiochemical Simulationslcsh:ScienceMultidisciplinaryCrystallographyChemistryOrganic CompoundsPhysicsEscherichia coli ProteinsCondensed Matter Physics3. Good healthPhysical sciencesChemistryCarbon-Sulfur LyasesBiochemistryCrystal StructureResearch ArticleChemical ElementsProtein subunitChemical physicschemistry.chemical_elementOxidative phosphorylationMolecular Dynamics Simulation03 medical and health sciencesThiolsEscherichia coliSolid State PhysicsProtein Interaction Domains and MotifsChemical BondingOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesComputational BiologyDimers (Chemical physics)Hydrogen BondingCell BiologySulfurAcceptorRedox sensitiveOxidative Stress030104 developmental biologyBiophysicslcsh:QProtein MultimerizationSulfur
researchProduct

Phosphorylation of meprin β controls its cell surface abundance and subsequently diminishes ectodomain shedding

2021

Meprin β is a zinc-dependent metalloprotease exhibiting a unique cleavage specificity with strong preference for acidic amino acids at the cleavage site. Proteomic studies revealed a diverse substrate pool of meprin β including the interleukin-6 receptor (IL-6R) and the amyloid precursor protein (APP). Dysregulation of meprin β is often associated with pathological conditions such as chronic inflammation, fibrosis, or Alzheimer's disease (AD). The extracellular regulation of meprin β including interactors, sheddases, and activators has been intensively investigated while intracellular regulation has been barely addressed in the literature. This study aimed to analyze C-terminal phosphorylat…

0301 basic medicineProtein Kinase C-alphaImmunoprecipitationmedia_common.quotation_subjectBiochemistry03 medical and health sciences0302 clinical medicineProtein Kinase C betaTumor Cells CulturedGeneticsAmyloid precursor proteinHumansPhosphorylationInternalizationMolecular BiologyProtein kinase Cmedia_commonbiologyChemistryCell MembraneMetalloendopeptidasesSheddaseCell biology030104 developmental biologyGene Expression RegulationEctodomainColonic NeoplasmsProteolysisbiology.proteinPhosphorylationExtracellular Space030217 neurology & neurosurgeryIntracellularBiotechnologyThe FASEB Journal
researchProduct

Breaking BAG: The Co-Chaperone BAG3 in Health and Disease.

2016

Human BAG ( B cl-2-associated a thano g ene) proteins form a family of antiapoptotic proteins that currently consists of six members (BAG1–6) all sharing the BAG protein domain from which the name arises. Via this domain, BAG proteins bind to the heat shock protein 70 (Hsp70), thereby acting as a co-chaperone regulating the activity of Hsp70. In addition to their antiapoptotic activity, all human BAG proteins have distinct functions in health and disease, and BAG3 in particular is the focus of many investigations. BAG3 has a modular protein domain composition offering the possibility for manifold interactions with other proteins. Various BAG3 functions are implicated in disorders including …

0301 basic medicineProtein domainCellular homeostasisBiologyToxicologyBAG303 medical and health sciencesMuscular DiseasesNeoplasmsmedicineAutophagyAnimalsHumansHSP70 Heat-Shock ProteinsAdaptor Proteins Signal TransducingPharmacologyAutophagyNeurodegenerationNeurodegenerative Diseasesmedicine.diseaseCell biologyHsp70Co-chaperone030104 developmental biologyProteasomeApoptosis Regulatory ProteinsTrends in pharmacological sciences
researchProduct