Search results for "MAMPs"

showing 2 items of 2 documents

Mechanisms of Defence to Pathogens : Biochemistry and Physiology

2014

SPE IPM; International audience; Plant defences comprise both pre-existing barriers as well as defences induced upon perception of pathogen-associated molecular patterns (PAMPs) or microbe-associated molecular patterns (MAMPs) or molecules produced from damage as a result of infection (damage-associated molecular patterns (DAMPs)). This chapter focuses on the induced mechanisms of defence. The inducibility of phytoalexin biosynthesis has probably been favoured in the course of evolution by biological constraints such as metabolic costs and functional side-effects associated with chemical defence. Historically, the term ‘hypersensitive’ refers to the rapid and localized cell death induced in…

0106 biological sciences0303 health sciences[SDV]Life Sciences [q-bio]plant defencesfood and beveragespathogenspathogenesis-related (PR) proteinsBiology01 natural sciencesPhytoalexin biosynthesisMicrobiologymicrobe-associated molecular patterns (MAMPs)03 medical and health scienceshypersensitive response (HR)Biochemistrypathogen-associated molecular patterns (PAMPs)[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biologydamage-associated molecular patterns (DAMPs)phytoalexin biosynthesis030304 developmental biology010606 plant biology & botany
researchProduct

Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine

2009

International audience; Rhamnolipids produced by the bacteria Pseudomonas aeruginosa are known as very efficient biosurfactant molecules. They are used for a wide range of industrial applications, especially in food, cosmetics and pharmaceutical formulations as well as in bioremediation of pollutants. In this paper, the role of rhamnolipids as novel molecules triggering defence responses and protection against the fungus Botrytis cinerea in grapevine is presented. The effect of rhamnolipids was assessed in grapevine using cell suspension cultures and vitro-plantlets. Ca2+ influx, mitogen-activated protein kinase activation and reactive oxygen species production form part of early signalling…

0106 biological sciencesPOTENTIATIONPhysiologyPlant ScienceFungusmedicine.disease_cause01 natural sciencesPSEUDOMONAS AERUGINOSAMicrobiologySurface-Active Agents03 medical and health sciencesBioremediationBOTRYTIS CINEREA[CHIM.ANAL]Chemical Sciences/Analytical chemistrySpore germinationmedicineGRAPEVINEVitis[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Cells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biologyBotrytis cinerea[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesbiologyPseudomonas aeruginosa[CHIM.ORGA]Chemical Sciences/Organic chemistryfungiPLANT DEFENCE[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyRHAMNOLIPIDESpores Fungalbiology.organism_classification[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM][SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyRNA PlantCalciumBotrytisMAMPsGlycolipidsMitogen-Activated Protein KinasesReactive Oxygen SpeciesBacteria010606 plant biology & botany
researchProduct