Search results for "MATRIX FACTORIZATION"

showing 3 items of 23 documents

Extract Mismatch Negativity and P3a through Two-Dimensional Nonnegative Decomposition on Time-Frequency Represented Event-Related Potentials

2010

This study compares the row-wise unfolding nonnegative tensor factorization (NTF) and the standard nonnegative matrix factorization (NMF) in extracting time-frequency represented event-related potentials—mismatch negativity (MMN) and P3a from EEG under the two-dimensional decomposition The criterion to judge performance of NMF and NTF is based on psychology knowledge of MMN and P3a MMN is elicited by an oddball paradigm and may be proportionally modulated by the attention So, participants are usually instructed to ignore the stimuli However the deviant stimulus inevitably attracts some attention of the participant towards the stimuli Thus, P3a often follows MMN As a result, if P3a was large…

medicine.diagnostic_testbusiness.industrySpeech recognitionMismatch negativityPattern recognitionElectroencephalographyNon-negative matrix factorizationTime–frequency analysisP3aEvent-related potentialFeature (machine learning)medicineArtificial intelligencebusinessOddball paradigmMathematics
researchProduct

Information Extraction from Binary Skill Assessment Data with Machine Learning

2021

Strength training exercises are essential for rehabilitation, improving our health as well as in sports. For optimal and safe training, educators and trainers in the industry should comprehend exercise form or technique. Currently, there is a lack of tools measuring in-depth skills of strength training experts. In this study, we investigate how data mining methods can be used to identify novel and useful skill patterns from a binary multiple choice questionnaire test designed to measure the knowledge level of strength training experts. A skill test assessing exercise technique expertise and comprehension was answered by 507 fitness professionals with varying backgrounds. A triangulated appr…

non-negative matrix factorizationliikuntataidotkoneoppiminenmittarit (mittaus)klusterianalyysidata miningvoimaharjoittelutiedonlouhintabinary dataclusteringstrength training skill test
researchProduct

Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-diffusion Models

2016

American options can be priced by solving linear complementary problems (LCPs) with parabolic partial(-integro) differential operators under stochastic volatility and jump-diffusion models like Heston, Merton, and Bates models. These operators are discretized using finite difference methods leading to a so-called full order model (FOM). Here reduced order models (ROMs) are derived employing proper orthogonal decomposition (POD) and non negative matrix factorization (NNMF) in order to make pricing much faster within a given model parameter variation range. The numerical experiments demonstrate orders of magnitude faster pricing with ROMs. peerReviewed

ta113Mathematical optimizationStochastic volatilityDiscretizationComputer scienceJump diffusionFinite difference method010103 numerical & computational mathematics01 natural sciencesNon-negative matrix factorization010101 applied mathematicsValuation of optionslinear complementary problemRange (statistics)General Earth and Planetary SciencesApplied mathematicsreduced order modelFinite difference methods for option pricing0101 mathematicsAmerican optionoption pricingGeneral Environmental ScienceProcedia Computer Science
researchProduct