Search results for "MDM2"
showing 10 items of 36 documents
Nitric oxide enhances Th9 cell differentiation and airway inflammation
2014
International audience; Th9 cells protect hosts against helminthic infection but also mediate allergic disease. Here we show that nitric oxide (NO) promotes Th9 cell polarization of murine and human CD4(+) T cells. NO de-represses the tumour suppressor gene p53 via nitrosylation of Mdm2. NO also increases p53-mediated IL-2 production, STAT5 phosphorylation and IRF4 expression, all essential for Th9 polarization. NO also increases the expression of TGFβR and IL-4R, pivotal to Th9 polarization. OVA-sensitized mice treated with an NO donor developed more severe airway inflammation. Transferred Th9 cells induced airway inflammation, which was exacerbated by NO and blocked by anti-IL-9 antibody.…
In human retinoblastoma Y79 cells okadaic acid-parthenolide co-treatment induces synergistic apoptotic effects, with PTEN as a key player.
2013
Retinoblastoma is the most common intraocular malignancy of childhood. In developing countries, treatment is limited, long-term survival rates are low and current chemotherapy causes significant morbidity to pediatric patients and significantly limits dosing. Therefore there is an urgent need to identify new therapeutic strategies to improve the clinical outcome of patients with retinoblastoma. here, we investigated the effects of two natural compounds okadaic acid (OKa) and parthenolide (PN) on human retinoblastoma Y79 cells. For the first time we showed that OKa/PN combination at subtoxic doses induces potent synergistic apoptotic effects accompanied by lowering in p-akt levels, increasin…
Abstract 2435: Amplification of CDK4 and MDM2 is associated with atypical clinical features in high risk neuroblastoma patients
2016
Abstract MYCN-amplification and 11q-deletion are important, although incomplete, markers of high-risk neuroblastoma. Thus, characterization of additional genomic alterations that can be used as prognostic and/or predictive markers is of clinical importance in order to provide best treatment possible. By using SNP-microarrays we identified a small group of neuroblastomas with high grade amplification of one or multiple loci on 12q, commonly involving the potential oncogenic target genes CKD4 (12q13-14) and/or MDM2 (12q15). The CDK4 and MDM2 regions were co-amplified in 13/16 samples, two tumors had CDK4-amplification in absence of MDM2-amplification while one tumor had MDM2-amplification wit…
Chemotherapy-induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediatedviathe extrinsic and the intrinsic pathway
2010
We investigated the downstream mechanisms by which chemotherapeutic drugs elicit apoptosis in hepatocellular carcinoma (HCC). Genomic signatures of HCC cell lines treated with different chemotherapeutic drugs were obtained. Analyses of apoptosis pathways were performed and RNA interference was used to evaluate the role of the p53 family. Endogenous p53, p63 and p73 were upregulated in response to DNA damage by chemotherapeutic drugs. Blocking p53 family function led to chemoresistance in HCC. Stimulation and blocking experiments of the CD95-, the TNF- and the TRAIL-receptor systems revealed that cytotoxic drugs, via the p53 family members as transactivators, can trigger expression of each o…
Histone deacetylase inhibitors induce in human hepatoma HepG2 cells acetylation of p53 and histones in correlation with apoptotic effects
2007
This report shows that histone deacetylase inhibitors (HDACIs) induced apoptosis in human hepatoma HepG2 cells in a dose- and time-dependent manner. Trichostatin A (TSA), ITF2357 and suberoylanilide hydroxamic acid (SAHA), which were very effective agents, caused apoptotic effects after a lag phase of 12-16 h. In order to elucidate the mechanism of HDACIs action in HepG2 cells we have studied the effects of TSA, ITF2357 and SAHA on acetylation of p53 and histones H2A, H2B, H3 and H4. It was observed that HDACIs rapidly induced acetylation of these proteins, being the effects clearly visible already at 30 min of treatment at the same doses which caused apoptosis. Analysis of the immunocomple…
The MDM2-p53 pathway is involved in preconditioning-induced neuronal tolerance to ischemia
2018
Brain preconditioning (PC) refers to a state of transient tolerance against a lethal insult that can be evoked by a prior mild event. It is thought that PC may induce different pathways responsible for neuroprotection, which may involve the attenuation of cell damage pathways, including the apoptotic cell death. In this context, p53 is a stress sensor that accumulates during brain ischemia leading to neuronal death. The murine double minute 2 gene (MDM2), a p53-specific E3 ubiquitin ligase, is the main cellular antagonist of p53, mediating its degradation by the proteasome. Here, we study the role of MDM2-p53 pathway on PC-induced neuroprotection both in cultured neurons (in vitro) and rat …
Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: the investigation of p53-MDM2 interaction and its inhibition by …
2010
The mdm2 oncogene product, MDM2, is an ubiquitin protein ligase that inhibits the transcriptional activity of the tumor suppressor p53 and promotes its degradation. About 50% of all human cancers present mutations or deletions in the TP53 gene. In the remaining half of all human neoplasias that express the wild-type protein, aberrations of p53 regula- tors, such as MDM2, account for p53 inhibition. For this reason, designing small-molecule inhibitors of the p53-MDM2 protein-protein interaction is a promising strategy for the treatment of cancers retaining wild-type p53. The development of inhibitors has been challenging. Although many small-molecule MDM2 inhibitors have shown potent in vitr…
Novel isatin-derived molecules activate p53 via interference with Mdm2 to promote apoptosis
2018
International audience; The p53 protein is a key tumor suppressor in mammals. In response to various forms of genotoxic stress p53 stimulates expression of genes whose products induce cell cycle arrest and/or apoptosis. An E3-ubiquitin ligase, Mdm2 (mouse-double-minute 2) and its human ortholog Hdm2, physically interact with the amino-terminus of p53 to mediate its ubiquitin-mediated degradation via the proteasome. Thus, pharmacological inhibition of the p53-Mdm2 interaction leads to overall stabilization of p53 and stimulation of its anti-tumorigenic activity. In this study we characterize the biological effects of a novel class of non-genotoxic isatin Schiff and Mannich base derivatives (…
Anaplastic Wilms' tumour, a subtype displaying poor prognosis, harbours p53 gene mutations
1994
The genetics of Wilms' tumour (WT), a paediatric malignancy of the kidney, is complex. Inactivation of the tumour suppressor gene, WT1, is associated with tumour aetiology in approximately 10-15% of WTs. Chromosome 17p changes have been noted in cytogenetic studies of WTs, prompting us to screen 140 WTs for p53 mutations. When histopathology reports were available, p53 mutations were present in eight of eleven anaplastic WTs, a tumour subtype associated with poor prognosis. Amplification of MDM2, a gene whose product binds and sequesters p53, was excluded. Our results indicate that p53 alterations provide a molecular marker for anaplastic WTs.
Effects of the MDM2 inhibitor Nutlin-3a on sensitivity of pancreatic cancer cells to berberine and modified berberines in the presence and absence of…
2021
Abstract Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). A key regulatory gene frequently mutated (∼75%) in PDAC is the TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell cycle progression, apoptosis, cancer progression and other growth regulatory processes. The mouse double minute 2 homolog (MDM2) gene product is a nuclear-localized E3 ubiquitin ligase and negatively regulates the TP53 protein which results in its proteasomal degradation. Various MDM2 inhibitors have been isolated and examined in clinical t…