Search results for "MECHANISM"
showing 10 items of 1835 documents
Evaluating the antifibrotic potency of galunisertib in a human ex vivo model of liver fibrosis
2017
Background and Purpose Liver fibrosis is a major cause of liver-related mortality and, so far, no effective antifibrotic drug is available. Galunisertib, a TGF-β receptor type I kinase inhibitor, is a potential candidate for the treatment of liver fibrosis. Here, we evaluated the potency of galunisertib in a human ex vivo model of liver fibrosis. Experimental Approach Antifibrotic potency and associated mechanisms were studied ex vivo, using both healthy and cirrhotic human precision-cut liver slices. Fibrosis-related parameters, both transcriptional and translational level, were assessed after treatment with galunisertib. Key Results Galunisertib showed a prominent antifibrotic potency. Ph…
Mapping molecular binding by means of conformational dynamics measurements
2017
[EN] Protein-protein interactions are key in virtually all biological processes. The study of these interactions and the interfaces that mediate them play a key role in the understanding of biological function. In particular, the observation of protein¿protein interactions in their dynamic environment is technically difficult. Here two surface analysis techniques, dual polarization interferometry and quartz crystal microbalance with dissipation monitoring, were paired for real-time mapping of the conformational dynamics of protein¿ protein interactions. Our approach monitors this dynamics in real time and in situ, which is a great advancement within technological platforms for drug discover…
Bioelectrical Coupling of Single-Cell States in Multicellular Systems.
2020
The spatiotemporal distributions of signaling ions and molecules that modulate biochemical pathways in nonexcitable cells are influenced by multicellular electric potentials. These potentials act as distributed controllers encoding instructive spatial patterns in development and regeneration. We review experimental facts and discuss recent bioelectrical models that provide new physical insights and complement biochemical approaches. Single-cell states are modulated at the multicellular level because of the coupling between neighboring cells, thus allowing memories and multicellular patterns. The model is based on (i) two generic voltage-gated ion channels that promote the polarized and depo…
Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting …
2018
Modern technologies have eased our lives but these conveniences can impact our lifestyles in destructive ways. Noise pollution, mental stresses, and smoking (as a stress-relieving solution) are some environmental hazards that affect our well-being and healthcare budgets. Scrutinizing their pathophysiology could lead to solutions to reduce their harmful effects. Recent Advances: Oxidative stress plays an important role in initiating local and systemic inflammation after noise pollution, mental stress, and smoking. Lipid peroxidation and release of lysolipid by-products, disturbance in activation and function of nuclear factor erythroid 2-related factor 2 (Nrf2), induction of stress hormones …
Autophagy as a defense strategy against stress: focus on Paracentrotus lividus sea urchin embryos exposed to cadmium
2015
Autophagy is used by organisms as a defense strategy to face environmental stress. This mechanism has been described as one of the most important intracellular pathways responsible for the degradation and recycling of proteins and organelles. It can act as a cell survival mechanism if the cellular damage is not too extensive or as a cell death mechanism if the damage/stress is irreversible; in the latter case, it can operate as an independent pathway or together with the apoptotic one. In this review, we discuss the autophagic process activated in several aquatic organisms exposed to different types of environmental stressors, focusing on the sea urchin embryo, a suitable system recently in…
Itinéraire d’un agent double
2016
Protein S-nitrosylation is now recognized as a ubiquitous regulatory mechanism. Like any post-translational modifications, S-nitrosylation is critical for the control of numerous cellular processes. It is now clear that S-nitrosylation is playing a double game, enhancing or inhibiting the tumor growth or the induction of cell death. Thanks to research aimed at demonstrating NO cytotoxic effects, new therapeutic strategies based on NO donor drugs have emerged. Although therapeutic NO donors can target a large number of proteins, the cellular mechanism is still not fully understood. This review reflects the current state of knowledge on S-nitrosylated proteins that take part of the oncogenic …
Ferroptosis and Its Potential Role in Human Diseases
2020
Ferroptosis is a novel regulated cell death pattern discovered when studying the mechanism of erastin-killing RAS mutant tumor cells in 2012. It is an iron-dependent programmed cell death pathway mainly caused by an increased redox imbalance but with distinct biological and morphology characteristics when compared to other known cell death patterns. Ferroptosis is associated with various diseases including acute kidney injury, cancer, and cardiovascular, neurodegenerative, and hepatic diseases. Moreover, activation or inhibition of ferroptosis using a variety of ferroptosis initiators and inhibitors can modulate disease progression in animal models. In this review, we provide a comprehensiv…
Elastin-derived peptide VGVAPG affects the proliferation of mouse cortical astrocytes with the involvement of aryl hydrocarbon receptor (Ahr), peroxi…
2019
Abstract During aging and ischemic and hemorrhagic stroke, elastin molecules are degraded and elastin-derived peptides are released into the brain microenvironment. Val-Gly-Val-Ala-Pro-Gly (VGVAPG) is a repeating hexapeptide in the elastin molecule. It is well documented that the peptide sequence binds with high affinity to elastin-binding protein (EBP) located on the cell surface, thereby transducing a molecular signal into the cell. The aim of our study was to investigate whether EBP, aryl hydrocarbon receptor (Ahr), and peroxisome proliferator-activated receptor gamma (Pparγ) are involved in VGVAPG-stimulated proliferation. Primary astrocytes were maintained in DMEM/F12 medium without ph…
Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach
2018
Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This netw…
Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia—Relevance for Mental Diseases
2021
The heteroreceptor complexes present a novel biological principle for signal integration. These complexes and their allosteric receptor–receptor interactions are bidirectional and novel targets for treatment of CNS diseases including mental diseases. The existence of D2R-5-HT2AR heterocomplexes can help explain the anti-schizophrenic effects of atypical antipsychotic drugs not only based on blockade of 5-HT2AR and of D2R in higher doses but also based on blocking the allosteric enhancement of D2R protomer signaling by 5-HT2AR protomer activation. This research opens a new understanding of the integration of DA and 5-HT signals released from DA and 5-HT nerve terminal networks. The biologica…