Search results for "MESON-EXCHANGE"

showing 8 items of 8 documents

Mesonic enhancement of the weak axial charge and its effect on the half-lives and spectral shapes of first-forbidden J+↔J− decays

2018

The effects of the enhancement of the axial-charge matrix element γ5 were studied in medium heavy and heavy nuclei for first-forbidden J+↔J− decay transitions using the nuclear shell model. Noticeable dependence on the enhancement ϵMEC of the axial-charge matrix element, as well as on the value of the axial-vector coupling constant gA was found in the spectral shapes of $^{93}$Y, $^{95}$Sr, and $^{97}$Y. The importance of the spectrum of $^{138}$Cs in the determination of gA is discussed. Half-life analyses in the A≈95 and A≈135 regions were done, and consistent results gA≈0.90, 0.75, and 0.65, corresponding to the three enhancement scenarios ϵMEC=1.4, 1.7, and 2.0, were obtained. Connectio…

Coupling constantPhysicsNuclear and High Energy PhysicsSpectral shape analysista114010308 nuclear & particles physicsSpectrum (functional analysis)forbidden beta decaysNuclear shell modelCharge (physics)01 natural scienceslcsh:QC1-999nuclear medium effectsspectral shapemeson-exchange currents0103 physical sciencesweak interactionsMatrix elementAtomic physicsAnomaly (physics)ydinfysiikka010306 general physicslcsh:PhysicsPhysics Letters B
researchProduct

Heavy-quark spin symmetry for charmed and strange baryon resonances

2013

We study charmed and strange odd-parity baryon resonances that are generated dynamically by a unitary baryon-meson coupled-channels model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-Tomozawa chiral Lagrangian to SU(8) spin-flavor symmetry plus a suitable symmetry breaking. The model generates resonances with negative parity from the s-wave interaction of pseudoscalar and vector mesons with 1/2(+) and 3/2(+) baryons in all the isospin, spin, and strange sectors with one, two, and three charm units. Some of our results can be identified with experimental data from several facilities, such as the CLEO, Belle, or BaBar Collaborations, as we…

DYNAMICSQuarkNuclear and High Energy PhysicsParticle physicsCharmNuclear TheoryMesonNuclear TheoryFOS: Physical sciences01 natural sciencesUnitary stateHeavy-quark spin symmetryNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)MESON-EXCHANGE0103 physical sciencesSymmetry breakingNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsDynamically generated baryon resonancesHigh Energy Physics::PhenomenologyFísicaParity (physics)COUPLED-CHANNELBaryonPseudoscalarHigh Energy Physics - PhenomenologyIsospinHigh Energy Physics::Experiment
researchProduct

Investigating the role of strangeness in baryon–antibaryon annihilation at the LHC

2022

Annihilation dynamics plays a fundamental role in the baryon–antibaryon interaction (B–B‾) at low-energy and its strength and range are crucial in the assessment of possible baryonic bound states. Experimental data on annihilation cross sections are available for the p–p‾ system but not in the low relative momentum region. Data regarding the B–B‾ interaction with strange degrees of freedom are extremely scarce, hence the modeling of the annihilation contributions is mainly based on nucleon–antinucleon (N–N‾) results, when available. In this letter we present a measurement of the p–p‾, p–Λ‾⊕p‾–Λ and Λ–Λ‾ interaction using correlation functions in the relative momentum space in high-multiplic…

Meson-exchangeNuclear and High Energy PhysicsNucleon-antinucleon systemLow-energyhiukkasfysiikkaDynamics
researchProduct

Odd parity bottom-flavored baryon resonances

2013

The LHCb Collaboration has recently observed two narrow baryon resonances with beauty. Their masses and decay modes look consistent with the quark model orbitally excited states Lambda(b)(5912) and Lambda(b)*(5920), with quantum numbers J(P) = 1/2(-) and 3/2(-), respectively. We predict the existence of these states within a unitarized meson-baryon coupled-channel dynamical model, which implements heavy-quark spin symmetry. Masses, quantum numbers and couplings of these resonances to the different meson-baryon channels are obtained. We find that the resonances Lambda(0)(b)(5912) and Lambda(0)(b)(5920) are heavy-quark spin symmetry partners, which naturally explains their approximate mass de…

Nuclear and High Energy PhysicsParticle physicsCharmNuclear TheoryN-asteriskHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciences01 natural sciencesCHARMNuclear Theory (nucl-th)SUM-RULESHigh Energy Physics - Phenomenology (hep-ph)Heavy-quark symmetryMESON-EXCHANGE0103 physical sciencesChiral dynamicsNuclear Experiment010306 general physicsNuclear theorySpectroscopyKaon-nucleon interactionsPhysicsMeson-exchangeStatesSPECTROSCOPYCoupled-channelN-ASTERISK010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCHIRAL DYNAMICSFísicaCOUPLED-CHANNELHEAVY-QUARK SYMMETRYHigh Energy Physics - PhenomenologySTATESSum-rulesKAON-NUCLEON INTERACTIONSHigh Energy Physics::ExperimentSpin symmetryHumanities
researchProduct

Neutrino-nucleus quasi-elastic and 2p2h interactions up to 10 GeV

2013

We extend to 10 GeV results from a microscopic calculation of charged-current neutrino-nucleus reactions that do not produce a pion in the final state. For the class of events coming from neutrino interactions with two nucleons producing two holes (2p2h), limiting the calculation to three-momentum transfers less than 1.2 GeV produces a two-dimensional distribution in momentum and energy transfer that is roughly constant as a function of energy. The cross section for 2p2h interactions approximately scales with the number of nucleons for isoscalar nuclei, similar to the quasi-elastic cross section. When limited to momentum transfers below 1.2 GeV, the cross section is 26% of the quasi-elastic…

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryIsoscalarFOS: Physical sciences01 natural sciences7. Clean energyScatteringNuclear Theory (nucl-th)Nuclear physicsMomentumCross section (physics)High Energy Physics - Phenomenology (hep-ph)Pion0103 physical sciencesNuclear Experiment010306 general physicsNeutrino oscillationPhysicsMeson-exchange currents010308 nuclear & particles physicsMomentum transferHigh Energy Physics - PhenomenologyFísica nuclearHigh Energy Physics::ExperimentNeutrinoNucleonPhysical Review D
researchProduct

Two particle-hole excitations in charged current quasielastic antineutrino-nucleus scattering

2013

We evaluate the quasielastic and multinucleon contributions to the antineutrino-nucleus scattering cross section and compare our results with the recent MiniBooNE data. We use a local Fermi gas model that includes RPA correlations and gets the multinucleon part from a systematic many body expansion of the W boson selfenergy in the nuclear medium. The same model had been quite successful for the neutrino cross section and contains no new parameters. We have also analyzed the relevance of 2p2h events for the antineutrino energy reconstruction.

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryNuclear TheoryFOS: Physical sciences7. Clean energy01 natural sciencesPartícules (Física nuclear)Nuclear physicsMiniBooNENuclear Theory (nucl-th)Cross section (physics)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrinomedicine010306 general physicsNuclear ExperimentCharged currentPhysicsMeson-exchange currents010308 nuclear & particles physicsScatteringHigh Energy Physics - Phenomenologymedicine.anatomical_structureParticleHigh Energy Physics::ExperimentNeutrinoFermi gasNucleus
researchProduct

Charmed and strange baryon resonances with heavy-quark spin symmetry

2012

We study charmed and strange baryon resonances that are generated dynamically by a unitary baryon-meson coupled-channel model which incorporates heavy-quark spin symmetry. This is accomplished by extending the SU(3) Weinberg-Tomozawa chiral Lagrangian to SU(8) spin-flavor symmetry plus a suitable symmetry breaking. The model produces resonances with negative parity from s-wave interaction of pseudoscalar and vector mesons with $1/2^+$ and $3/2^+$ baryons. Resonances in all the isospin, spin, and strange sectors with one, two, and three charm units are studied. Our results are compared with experimental data from several facilities, such as the CLEO, Belle or BaBar Collaborations, as well as…

QuarkNuclear and High Energy PhysicsParticle physicsMesonNuclear TheoryNuclear TheoryFOS: Physical sciencesMASSPseudoscalar meson01 natural sciencesNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)MESON-EXCHANGE0103 physical sciencesSymmetry breakingVector mesonNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaCHIRAL DYNAMICSCOUPLED-CHANNELLAMBDA(+)(C)BaryonCharmed baryonsHigh Energy Physics - PhenomenologySTATESIsospinHigh Energy Physics::ExperimentPhysical Review D
researchProduct

NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering

2018

International audience; The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result.In this Wh…

electron nucleus: interactionNuclear TheoryElementary particle7. Clean energy01 natural sciencesCROSS-SECTIONSScatteringHigh Energy Physics - Phenomenology (hep-ph)Nuclear Experimentneutrino: interactionCOHERENT PION-PRODUCTIONPhysicsstrong interactionElectroweak interactionModel; Neutrino; Nuclear; Nucleus; Oscillations; Scattering; Nuclear and High Energy PhysicsHigh Energy Physics - PhenomenologyMUON-NEUTRINONeutrinoNucleonnumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsOscillationsFORM-FACTORSProcess (engineering)FOS: Physical sciencesELECTROMAGNETIC RESPONSEnuclear modelNucleusMESON-EXCHANGE CURRENTSNNLO QCD ANALYSISCHARGED-CURRENT INTERACTIONSnuclear physicsdeep inelastic scattering0103 physical sciencesNeutrinoNuclear010306 general physicsneutrino nucleus: scatteringresonance: modelelectroweak interaction010308 nuclear & particles physicsR=SIGMA-L/SIGMA-Tneutrino nucleus: interactionDeep inelastic scatteringPhysics and Astronomy13. Climate actionINELASTIC ELECTRON-SCATTERING[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Atomic nucleusneutrino: oscillationEvent (particle physics)Model
researchProduct