Search results for "MESSy"

showing 7 items of 7 documents

A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1

2020

The hydroxyl radical (OH) plays critical roles within the troposphere, such as determining the lifetime of methane (CH4), yet is challenging to model due to its fast cycling and dependence on a multitude of sources and sinks. As a result, the reasons for variations in OH and the resulting methane lifetime (τCH4), both between models and in time, are difficult to diagnose. We apply a neural network (NN) approach to address this issue within a group of models that participated in the Chemistry-Climate Model Initiative (CCMI). Analysis of the historical specified dynamics simulations performed for CCMI indicates that the primary drivers of τCH4 differences among 10 models are the flux of UV li…

Atmospheric ScienceAtmospheric chemistry010504 meteorology & atmospheric sciencesneural networkAnalytical chemistry010501 environmental sciences01 natural sciencesTropospherelcsh:Chemistrychemistry.chemical_compoundMESSyErdsystem-ModellierungMixing ratioTropospheric ozoneIsopreneNOx0105 earth and related environmental sciencesEMAChydroxyl radicalPhotodissociationlcsh:QC1-999Atmospheric chemistry neural networkmachine learningchemistrylcsh:QD1-99913. Climate actionCCMI[SDE]Environmental SciencesHydroxyl radicalWater vaporlcsh:Physicsmethane lifetime
researchProduct

The on-line coupled atmospheric chemistry model system MECO(n) – Part 5: Expanding the Multi-Model-Driver (MMD v2.0) for 2-way data exchange includin…

2018

Abstract. As part of the Modular Earth Submodel System (MESSy), the Multi-Model-Driver (MMD v1.0) was developed to couple online the regional Consortium for Small-scale Modeling (COSMO) model into a driving model, which can be either the regional COSMO model or the global European Centre Hamburg general circulation model (ECHAM) (see Part 2 of the model documentation). The coupled system is called MECO(n), i.e., MESSy-fied ECHAM and COSMO models nested n times. In this article, which is part of the model documentation of the MECO(n) system, the second generation of MMD is introduced. MMD comprises the message-passing infrastructure required for the parallel execution (multiple programme mul…

ECHAMatmospheric chemistryTheoretical computer science010504 meteorology & atmospheric sciencesComputer science0208 environmental biotechnology02 engineering and technology01 natural sciencesComputational scienceMESSyMECO(n)Erdsystem-Modellierungddc:550multi-scale modelling0105 earth and related environmental sciencesEMACtwo-way-nestinCOSMObusiness.industrylcsh:QE1-996.5grid transformationModular designGrid020801 environmental engineeringlcsh:GeologyEarth sciencesTransformation (function)Modular Earth Submodel SystemData exchangeLine (geometry)dustGRIDbusinessMulti-Model-DriverremappingInterpolationData transmissionGeoscientific Model Development
researchProduct

Implementation of the Community Earth System Model (CESM) version 1.2.1 as a new base model into version 2.50 of the MESSy framework

2016

Abstract. The Community Earth System Model (CESM1), maintained by the United States National Centre for Atmospheric Research (NCAR) is connected with the Modular Earth Submodel System (MESSy). For the MESSy user community, this offers many new possibilities. The option to use the Community Atmosphere Model (CAM) atmospheric dynamical cores, especially the state-of-the-art spectral element (SE) core, as an alternative to the ECHAM5 spectral transform dynamical core will provide scientific and computational advances for atmospheric chemistry and climate modelling with MESSy. The well-established finite volume core from CESM1(CAM) is also made available. This offers the possibility to compare …

Atmospheric physics010504 meteorology & atmospheric sciencesMeteorologyProcess (engineering)Computer scienceEarth System ModellingAtmospheric model01 natural sciencesModular Earth Submodel System (MESSy)Component (UML)Erdsystem-ModellierungCode (cryptography)0101 mathematics0105 earth and related environmental sciencesStructure (mathematical logic)EMACbusiness.industrylcsh:QE1-996.5Modular designlcsh:Geology010101 applied mathematicsCESM1Atmospheric chemistrySystems engineeringAir Chemistrybusiness
researchProduct

Implementation of a comprehensive ice crystal formation parameterization for cirrus and mixed-phase clouds in the EMAC model (based on MESSy 2.53)

2018

A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations (ICNCs). The parameterization of Barahona and Nenes (2009, hereafter BN09) allows for the treatment of ice nucleation taking into account the competition for water vapour between homogeneous and heterogeneous nucleation in cirrus clouds. Furthermore, the influence of chemically heterogeneous, polydisperse aerosols is considered by applying one of the multiple ice nucleating particle parameterizations which are included in BN09 to compute the heterogeneously formed ice crystals. BN09 has been modified in order to co…

010504 meteorology & atmospheric sciencesglobal climate modelNucleationMineral dustnucleation parameterizations010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesempirical parameterizationTroposphereinsoluble particlesddc:5500105 earth and related environmental sciencesmineral dustIce crystalssubmodel system messylcsh:QE1-996.5Northern Hemisphereatmospheric aerosollcsh:Geology13. Climate actionupper troposphereIce nucleusEnvironmental scienceCirrustransport sectorsWater vapordroplet number concentration
researchProduct

Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51

2016

Abstract. Three types of reference simulations, as recommended by the Chemistry–Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950–2011), hindcast simulations with specified dynamics (1979–2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950–2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two diff…

ECHAM550010504 meteorology & atmospheric sciencesMeteorologyEarth System ModellingModel system010501 environmental sciences010502 geochemistry & geophysics01 natural sciencesMESSyErdsystem-ModellierungHindcastChemistry-Climate Model IntiativeProjection (set theory)0105 earth and related environmental sciencesTropospheric aerosolEMACbusiness.industrylcsh:QE1-996.5DATA processing & computer scienceModular designlcsh:GeologyEarth system science13. Climate actionClimatologyAtmospheric chemistryAtmospheric Chemistryddc:004business
researchProduct

The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 3: Meteorological evaluation of the on-line coupled system

2012

Abstract. Three detailed meteorological case studies are conducted with the global and regional atmospheric chemistry model system ECHAM5/MESSy(→COSMO/MESSy)n, shortly named MECO(n), in order to assess the general performance of the on-line coupling of the regional model COSMO to the global model ECHAM5. The cases are characterised by intense weather systems in Central Europe: an intense cold frontal passage in March 2010, a convective frontal event in July 2007, and the high impact winter storm "Kyrill" in January 2007. Simulations are performed with the new on-line-coupled model system and compared to classical, off-line COSMO hindcast simulations driven by ECMWF analyses. Precipitation o…

Convectionmodel evaluationnestingMeteorology010504 meteorology & atmospheric sciencesatmospheric model0207 environmental engineering0211 other engineering and technologies02 engineering and technologyprecipitation01 natural sciencesMESSyHindcastPrecipitationmeteorology020701 environmental engineeringLine (formation)0105 earth and related environmental sciences021110 strategic defence & security studiesglobal modelregional modelCOSMOlcsh:QE1-996.5Stormlcsh:GeologyCold front13. Climate actionAtmospheric chemistryClimatologyEnvironmental sciencemodel couplingDynamik der AtmosphäreLead time
researchProduct

The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 2: On-line coupling with the Multi-Model-Driver (MMD)

2012

A new, highly flexible model system for the seamless dynamical down-scaling of meteorological and chemical processes from the global to the meso-γ scale is presented. A global model and a cascade of an arbitrary number of limited-area model instances run concurrently in the same parallel environment, in which the coarser grained instances provide the boundary data for the finer grained instances. Thus, disk-space intensive and time consuming intermediate and pre-processing steps are entirely avoided and the time interpolation errors of common off-line nesting approaches are minimised. More specifically, the regional model COSMO of the German Weather Service (DWD) is nested on-line into the …

atmospheric chemistryTheoretical computer scienceatmospheric model010504 meteorology & atmospheric sciencesScale (ratio)Computer scienceMessage Passing Interface02 engineering and technology01 natural sciencesComputational scienceMESSyComponent (UML)0202 electrical engineering electronic engineering information engineering0105 earth and related environmental sciencesglobal modelregional model020203 distributed computingCOSMOlcsh:QE1-996.5Process (computing)Gridlcsh:GeologyData exchangemodel couplingNesting (computing)Dynamik der AtmosphäreInterpolationGeoscientific Model Development
researchProduct