Search results for "METALLICITY"

showing 9 items of 49 documents

The Gaia-ESO Survey: evidence of atomic diffusion in M67?

2018

Investigating the chemical homogeneity of stars born from the same molecular cloud at virtually the same time is very important for our understanding of the chemical enrichment of the interstellar medium and with it the chemical evolution of the Galaxy. One major cause of inhomogeneities in the abundances of open clusters is stellar evolution of the cluster members. In this work, we investigate variations in the surface chemical composition of member stars of the old open clusterM67 as a possible consequence of atomic diffusion effects taking place during the main-sequence phase. The abundances used are obtained from high-resolution UVES/FLAMES spectra within the framework of the Gaia-ESO S…

astro-ph.SRstars: abundancesastro-ph.GAMetallicityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesevolution [Galaxy]Astronomi astrofysik och kosmologi0103 physical sciencesAstronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar Astrophysicsstars: evolution010303 astronomy & astrophysicsStellar evolutionSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsGalaxy: evolution010308 nuclear & particles physicsSubgiantMolecular cloudGalaxy: Abundanceabundances [Galaxy]Astronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesGalaxyInterstellar mediumStars: Abundanceabundances [stars]StarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)evolution [stars]Galaxy: Abundances; Galaxy: Evolution; Stars: Abundances; Stars: Evolution; Astronomy and Astrophysics; Space and Planetary ScienceGalaxy: abundancesAstrophysics::Earth and Planetary AstrophysicsOpen cluster
researchProduct

Stellar populations of galaxies in the ALHAMBRA survey up toz  ∼  1

2018

Aims. We aim at constraining the stellar population properties of quiescent galaxies. These properties reveal how these galaxies evolved and assembled since z similar to 1 up to the present time. Methods. Combining the ALHAMBRA multi-filter photo-spectra with the fitting code for spectral energy distribution MUFFIT (MUlti-Filter FITting), we built a complete catalogue of quiescent galaxies via the dust-corrected stellar mass vs. colour diagram. This catalogue includes stellar population properties, such as age, metallicity, extinction, stellar mass, and photometric redshift, retrieved from the analysis of composited populations based on two independent sets of simple stellar population (SSP…

formation [galaxies]Stellar massStellar populationAstrophysics::High Energy Astrophysical PhenomenaMetallicityPopulationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences0103 physical sciencesgalaxies: formationAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsevolution [galaxies]Astrophysics::Galaxy AstrophysicsPhotometric redshiftPhysicseducation.field_of_study010308 nuclear & particles physicsStar formationAstronomy and Astrophysicsstellar content [galaxies]Astrophysics - Astrophysics of GalaxiesGalaxygalaxies: photometrySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)photometry [galaxies]galaxies: stellar contentSpectral energy distributionAstrophysics::Earth and Planetary Astrophysicsgalaxies: evolutionAstronomy & Astrophysics
researchProduct

Mass-Metallicity Relation from Cosmological Hydrodynamical Simulations and X-ray Observations of Galaxy Groups and Clusters

2018

Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich clusters, to study the dependence of the metallicity and related quantities on the mass of the systems. The simulations are performed with an improved version of the Smoothed-Particle-Hydrodynamics \texttt{GADGET-3} code and consider various astrophysical processes including radiative cooling, metal enrichment and feedback from stars and active galactic nuclei (AGN). The scaling between the metallicity and the temperature obtained in the simulations ag…

galaxies: clusters: intracluster mediumActive galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)MetallicityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmethods: numericalGalaxy groups and clusters0103 physical sciencesCluster (physics)clusters: general [galaxies]methods: numerical; galaxies: clusters: general; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters010303 astronomy & astrophysicsScalingGalaxy clusterPhysics010308 nuclear & particles physicsnumerical [methods]Astronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesRedshiftStarsgalaxies: clusters: generalclusters: intracluster medium [galaxies]Space and Planetary ScienceX-rays: galaxies: clustersAstrophysics of Galaxies (astro-ph.GA)galaxies: clusters [X-rays]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations

2018

The uniformity of the intra-cluster medium (ICM) enrichment level in the outskirts of nearby galaxy clusters suggests that chemical elements were deposited and widely spread into the intergalactic medium before the cluster formation. This observational evidence is supported by numerical findings from cosmological hydrodynamical simulations, as presented in Biffi et al. (2017), including the effect of thermal feedback from active galactic nuclei. Here, we further investigate this picture, by tracing back in time the spatial origin and metallicity evolution of the gas residing at z=0 in the outskirts of simulated galaxy clusters. In these regions, we find a large distribution of iron abundanc…

galaxies: clusters: intracluster mediumCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusMetallicityFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesVirial theoremmethods: numericalgalaxies: clusters: general; galaxies: clusters: intracluster medium; methods: numericalAbundance (ecology)0103 physical sciencesCluster (physics)clusters: general [galaxies]010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGalaxy clusterPhysics010308 nuclear & particles physicsnumerical [methods]Astronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)clusters: intracluster medium [galaxies]galaxies: clusters: generalSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)HaloAstrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Solar neutrino spectroscopy in Borexino

2018

International audience; In more than ten years of operation, Borexino has performed a precision measurement of the solar neutrino spectrum, resolving almost all spectral components originating from the proton-proton fusion chain. The presentation will review the results recently released for the second data taking phase 2012–2016 during which the detector excelled by its unprecedentedly low background levels. New results on the rate of pp, 7Be, pep and 8B neutrinos as well as their implications for solar neutrino oscillations and metallicity are discussed.

neutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoMetallicityNuclear physicsbackground: lowneutrino: spectrum[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino oscillationSpectroscopyBorexinoPhysicsProton–proton chain reactionpp-chainp p: fusionprecision measurementDetector* Automatic Keywords *13. Climate actionsolar neutrinosspectralHigh Energy Physics::ExperimentBorexinoneutrino: oscillationNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Gaia-ESO Survey: The inner disk, intermediate-age open cluster Trumpler 23

2017

Full list of authors: Overbeek, J. C.; Friel, E. D.; Donati, P.; Smiljanic, R.; Jacobson, H. R.; Hatzidimitriou, D.; Held, E. V.; Magrini, L.; Bragaglia, A.; Randich, S.; Vallenari, A.; Cantat-Gaudin, T.; Tautvaišienė, G.; Jiménez-Esteban, F.; Frasca, A.; Geisler, D.; Villanova, S.; Tang, B.; Muñoz, C.; Marconi, G. Carraro, G.; San Roman, I.; Drazdauskas, A.; Ženovienė, R.; Gilmore, G.; Jeffries, R. D.; Flaccomio, E.; Pancino, E.; Bayo, A.; Costado, M. T.; Damiani, F.; Jofré, P.; Monaco, L.; Prisinzano, L.; Sousa, S. G.; Zaggia, S.

open clusters and associations: individual: Trumpler 23stars: abundancesMetallicityFOS: Physical sciencesGalaxy: abundances; Galaxy: disk; Galaxy: formation; Open clusters and associations: individual: Trumpler 23; Stars: abundances; Astronomy and Astrophysics; Space and Planetary ScienceAstrophysics01 natural sciencesGalaxy: diskPhotometry (optics)0103 physical sciencesGalaxy formation and evolutionDisc010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QBPhysics010308 nuclear & particles physicsabundances [Galaxy]Astronomy and AstrophysicsGalactic planeAstrophysics - Astrophysics of GalaxiesRadial velocityStarsindividual: Trumpler 23 [Open clusters and associations]Astrophysics - Solar and Stellar Astrophysicsformation [Galaxy]Space and Planetary ScienceGalaxy: formationAstrophysics of Galaxies (astro-ph.GA)abundances [Stars]Galaxy: abundancesdisk [Galaxy]Open cluster
researchProduct

Pulsating B and Be stars in the Small Magellanic Cloud

2008

Context: Stellar pulsations in main-sequence B-type stars are driven by the kappa-mechanism due to the Fe-group opacity bump. The current models do not predict the presence of instability strips in the B spectral domain at very low metallicities. As the metallicity of the SMC is lower than Z=0.005, it constitutes a very suitable object to test these predictions. Aims: The main objective is to investigate the existence of B-type pulsators at low metallicities, searching for short-term periodic variability in absorption-line B and Be stars in the SMC. The analysis has been performed in a sample of 313 B and Be stars with fundamental astrophysical parameters accurately determined from high-res…

oscillations [stars]statistics [Stars]Be starHertzsprung–Russell diagramMetallicityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesStars : emission-line Be; stars : oscillations; Stars : early-type; Stars : statistics; Galaxies : Magellanic Cloudssymbols.namesakeMagellanic Clouds [Galaxies]early-type [Stars]0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::GalaxiasAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsAstrophysics (astro-ph)Astronomy and AstrophysicsLight curveGalaxy:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Galaxias [UNESCO]Stars13. Climate actionSpace and Planetary Scienceemission-line Be [Stars]symbolsSmall Magellanic CloudAstrophysics::Earth and Planetary AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::EstrellasInstability strip:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas [UNESCO]
researchProduct

Chemical Cartography with APOGEE: Multi-element Abundance Ratios

2019

We map the trends of elemental abundance ratios across the Galactic disk, spanning R = 3-15 kpc and midplane distance |Z|= 0-2 kpc, for 15 elements in a sample of 20,485 stars measured by the SDSS/APOGEE survey (O, Na, Mg, Al, Si, P, S, K, Ca, V, Cr, Mn, Fe, Co, Ni). Adopting Mg rather than Fe as our reference element, and separating stars into two populations based on [Fe/Mg], we find that the median trends of [X/Mg] vs. [Mg/H] in each population are nearly independent of location in the Galaxy. The full multi-element cartography can be summarized by combining these nearly universal median sequences with our measured metallicity distribution functions and the relative proportions of the lo…

stars: abundances010504 meteorology & atmospheric sciencesMilky WayMetallicityPopulationFOS: Physical sciences01 natural sciencesGalaxy: diskStellar nucleosynthesisNucleosynthesis0103 physical scienceseducation010303 astronomy & astrophysicsnuclear reactions0105 earth and related environmental sciencesPhysicseducation.field_of_studyabundancesnucleosynthesisAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesGalaxySupernova13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxy: abundancesSupernova nucleosynthesis[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CartographyThe Astrophysical Journal
researchProduct

The Gaia-ESO Survey: impact of extra mixing on C and N abundances of giant stars

2018

The GES survey using FLAMES at the VLT has obtained high-resolution UVES spectra for a large number of giant stars, allowing a determination of the abundances of the key chemical elements C and N at their surface. The surface abundances of these chemical species are well-known to change in stars during their evolution on the red giant branch after the first dredge-up episod, as a result of extra-mixing phenomena. We investigate the effects of thermohaline mixing on C and N abundances using the first comparison between the GES [C/N] determinations with simulations of the observed fields using a model of stellar population synthesis. We explore the effects of thermohaline mixing on the chemic…

stars: abundances010504 meteorology & atmospheric sciencesStellar populationMetallicityFOS: Physical sciencesabundances ; stars: evolution ; galaxy: stellar content ; galaxy: abundances ; astrophysics - solar and stellar astrophysics [stars]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAstronomi astrofysik och kosmologi0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicsstellar content [Galaxy]Astronomy Astrophysics and Cosmologystars: evolution14. Life underwater010303 astronomy & astrophysicsStellar evolutionSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsGalaxy: stellar contentabundances [Galaxy]Astronomy and AstrophysicsGiant starRed-giant branchabundances [stars]StarsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceGlobular clusterevolution [stars]Galaxy: abundancesAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Open cluster
researchProduct