Search results for "METASTABILITY"

showing 10 items of 262 documents

Structural Metastability and Quantum Confinement in Zn1–xCoxO Nanoparticles

2016

This paper investigates the electronic structure of wurtzite (W) and rock-salt (RS) Zn1-xCoxO nanoparticles (NPs) by means of optical measurements under pressure (up to 25 GPa), X-ray absorption, and transmission electron microscopy. W-NPs were chemically synthesized at ambient conditions and RS-NPs were obtained by pressure-induced transformation of W-NPs. In contrast to the abrupt phase transition in W-Zn1-xCoxO as thin film or single crystal, occurring sharply at about 9 GPa, spectroscopic signatures of tetrahedral Co(2+) are observed in NPs from ambient pressure to about 17 GPa. Above this pressure, several changes in the absorption spectrum reveal a gradual and irreversible W-to-RS pha…

Phase transitionCondensed matter physicsAbsorption spectroscopyChemistryMechanical EngineeringBioengineering02 engineering and technologyGeneral ChemistryElectronic structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesAbsorption bandMetastability0103 physical sciencesGeneral Materials Science010306 general physics0210 nano-technologyAbsorption (electromagnetic radiation)Single crystalWurtzite crystal structureNano Letters
researchProduct

Critical effects in optical response due to charge transfer vibronic excitons and their structure in perovskite-like systems

1999

Abstract A mechanism for bilinear interaction between high-frequency light-induced electronic polarization and low-frequency soft lattice polarization is proposed. It is based on the fluctuations of the charge transfer connected with charge transfer vibronic excitons (CTVE). This bilinear mechanism leads to the appearance of the critical peculiarities of the absolute diffraction efficiency of transient gratings near the ferroelectric phase transition. A semi-empirical Hartree–Fock INDO method was used for the evaluation of the energy parameters and the equilibrium displacements for the CTVE in KTaO 3 . This numerical study did confirm the proposed CTVE-model. It was shown that the CTVE-phas…

Phase transitionCondensed matter physicsChemistryExcitonBiophysicsGeneral ChemistrySoft modesCondensed Matter PhysicsBiochemistryFerroelectricityAtomic and Molecular Physics and OpticsDipoleMetastabilityLattice (order)Perovskite (structure)Journal of Luminescence
researchProduct

Pressure Tunable Electronic Bistability in Fe(II) Hofmann-like Two-Dimensional Coordination Polymer [Fe(Fpz)2Pt(CN)4]: A Comprehensive Experimental a…

2021

A comprehensive experimental and theoretical study of both thermal-induced spin transition (TIST) as a function of pressure and pressure-induced spin transition (PIST) at room temperature for the two-dimensional Hofmann-like SCO polymer [Fe(Fpz)2Pt(CN)4] is reported. The TIST studies at different fixed pressures have been carried out by magnetic susceptibility measurements, while PIST studies have been performed by means of powder X-ray diffraction, Raman, and visible spectroscopies. A combination of the theory of elastic interactions and numerical Monte Carlo simulations has been used for the analysis of the cooperative interactions in TIST and PIST studies. A complete (T, P) phase diagram…

Phase transitionCondensed matter physicsPhononChemistrySpin transitionMagnetic susceptibilityInorganic Chemistrysymbols.namesakeHysteresisMetastabilitysymbolsPhysical and Theoretical ChemistryRaman spectroscopyPhase diagramInorganic Chemistry
researchProduct

ScVO4 under non-hydrostatic compression:a new metastable polymorph

2016

Ustedes se ocupan e ver si se puede hacer de acceso público. Podria buscra el preprint al ser algo reciente. Se estudia el comportamiento bajo alta presión del vanadato de scandio, ScVO4, bajo compresión no hidrostática. El estudio se realiza mediante difracción de rayos X en polvo usando radiación sincrotrón. Se detecta una transición no reversible desde la fase zircon a la fase fergusonita alrededor de 6 GPa con una discontinuidad en el volumen de un 10%. La fase fergusonota se puede recuperar como metaestable confirmandose mediante XRD. Las simulaciones ab intio confirman los resultados experimentales. Las propiedades ópticas y la propiedades vibracionales de la fase fergusonita son disc…

Phase transitionMaterials scienceBand gapAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsFergusonite01 natural sciencessymbols.namesakechemistryMetastabilityPhase (matter)0103 physical sciencessymbolsGeneral Materials ScienceScandium010306 general physics0210 nano-technologyRaman spectroscopyAmbient pressure
researchProduct

Lattice dynamics ofYVO4at high pressures

2010

We report an experimental and theoretical lattice-dynamics study of yttrium orthovanadate $({\text{YVO}}_{4})$ up to 33 GPa together with a theoretical study of its structural stability under pressure. Raman-active modes of the zircon phase are observed up to 7.5 GPa, where the onset of an irreversible zircon-to-scheelite phase transition is detected, and Raman-active modes in the scheelite structure are observed up to 20 GPa, where a reversible second-order phase transition occurs. Our ab initio total-energy calculations support that the second-order phase transition in ${\text{YVO}}_{4}$ is from the scheelite to the monoclinic M-fergusonite structure. The M-fergusonite structure remains u…

Phase transitionMaterials scienceCondensed matter physicsAb initioCondensed Matter PhysicsElectronic Optical and Magnetic Materialschemistry.chemical_compoundsymbols.namesakechemistryScheeliteMetastabilityPhase (matter)symbolsYttrium orthovanadateRaman spectroscopyMonoclinic crystal systemPhysical Review B
researchProduct

Intrinsic stability of quasicrystals under the generation of Frenkel pairs

2015

Under irradiation metastable quasicrystals undergo a phase transition to an amorphous state. This transition can be reversed by annealing. As in normal crystalline materials the phase transition is considered to be triggered by generation and recombination of vacancies and interstitial atoms (Frenkel pairs). We have classified the possible Frenkel defects in a metastable monatomic quasicrystal with respect to geometric and energetic properties. With numerical simulation we have studied the behaviour of the quasicrystal under a load of Frenkel defects for various defect concentrations. We find three ranges of behaviour: up to 5% defects per atom the structure remains icosahedral, in a middle…

Phase transitionMaterials scienceCondensed matter physicsIcosahedral symmetryQuasicrystalCondensed Matter Physics530Electronic Optical and Magnetic MaterialsAmorphous solidMonatomic ionMetastabilityVacancy defectFrenkel defectFrenkel-Defekt QuasikristallGeneral Materials ScienceZeitschrift f�r Physik B Condensed Matter
researchProduct

Phase Behavior and Microscopic Transport Processes in Binary Metallic Alloys: Computer Simulation Studies

2009

In a binary liquid mixture, different kinds of phase transitions can occur that are associated with various mass transport phenomena in the liquid. First, there is the possibility that the liquid undergoes a liquid-liquid demixing transition [1]. Near the critical point of this transition, a slowing down of dynamic properties is observed which is characterized, e.g., by a vanishing interdiffusion coefficient at the critical point [2, 3]. Another possible phase transition is a first-order transition of the liquid into a crystalline structure. In this case, crystal nucleation and growth are limited by the diffusive transport in the liquid [1, 4]. In a binary liquid, crystal nucleation process…

Phase transitionMaterials scienceCondensed matter physicsNucleationMicroscopic scalelaw.inventionCondensed Matter::Soft Condensed MatterMolecular dynamicslawChemical physicsCritical point (thermodynamics)MetastabilityCrystallizationGlass transition
researchProduct

Inhibition of light emission from the metastable tetragonal phase at low temperatures in island-like films of lead iodide perovskites

2019

Photonic applications based on halide perovskites, namely CH3NH3PbI3 (MAPbI3), have recently attracted remarkable attention due to the high efficiencies reported for photovoltaic and light emitting devices. Despite these outstanding results, there are many temperature-, laser excitation power-, and morphology-dependent phenomena that require further research to be completely understood. In this work, we have investigated in detail the nature of exciton optical transitions and recombination dynamics below and above the orthorhombic/tetragonal ('O'-/'T'-) temperature phase transition (∼150 K) depending on the material continuity (continuous-like) or discontinuity (island-like) in MAPbI3 films…

Phase transitionMaterials sciencePhotoluminescenceCondensed matter physicsExciton02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energy0104 chemical sciencesTetragonal crystal systemCondensed Matter::Materials ScienceMetastabilityGeneral Materials ScienceLight emissionSpontaneous emission0210 nano-technologyPerovskite (structure)
researchProduct

Polymorphism of praseodymium orthovanadate under high pressure

2021

Zircon-type $\mathrm{PrV}{\mathrm{O}}_{4}$ has been studied at high pressures and room temperature by means of synchrotron powder x-ray diffraction. At room temperature, we observed the previously known zircon-to-monazite phase transition at 5.5(4) GPa and a second phase transition from monazite to a monoclinic structure at 12.7(8) GPa, which we identified as a $\mathrm{PbW}{\mathrm{O}}_{4}$-III-type phase. This conclusion is supported by our ab initio calculations, which also predict a scheelite-type phase to be stable at high pressure. Motivated by this finding, we subjected zircon-type $\mathrm{PrV}{\mathrm{O}}_{4}$ samples to high pressure (7 GPa) and temperature (600, 800, and 1000 \if…

Phase transitionMaterials sciencePraseodymiumchemistry.chemical_elementKinetic energyPhysics::GeophysicsCondensed Matter::Materials Sciencechemistry.chemical_compoundCrystallographychemistryAb initio quantum chemistry methodsScheelitePhase (matter)MetastabilityMonoclinic crystal systemPhysical Review B
researchProduct

Pressure-induced order–disorder transitions in β-In2S3: an experimental and theoretical study of structural and vibrational properties

2021

This joint experimental and theoretical study of the structural and vibrational properties of β-In2S3 upon compression shows that this tetragonal defect spinel undergoes two reversible pressure-induced order-disorder transitions up to 20 GPa. We propose that the first high-pressure phase above 5.0 GPa has the cubic defect spinel structure of α-In2S3 and the second high-pressure phase (ϕ-In2S3) above 10.5 GPa has a defect α-NaFeO2-type (R3m) structure. This phase, related to the NaCl structure, has not been previously observed in spinels under compression and is related to both the tetradymite structure of topological insulators and to the defect LiTiO2 phase observed at high pressure in oth…

Phase transitionMaterials scienceSpinelGeneral Physics and Astronomy02 engineering and technologyengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCrystallographyTetragonal crystal systemMetastabilityTopological insulatorPhase (matter)engineeringPhysical and Theoretical ChemistryIsostructural0210 nano-technologyAmbient pressurePhysical Chemistry Chemical Physics
researchProduct