Search results for "MIDGUT"
showing 10 items of 81 documents
Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly’s midgut environment
2021
Tsetse flies are vectors of parasitic African trypanosomes, the etiological agents of human and animal African trypanosomoses. Current disease control methods include fly-repelling pesticides, fly trapping, and chemotherapeutic treatment of infected people and animals. Inhibiting tsetse’s ability to transmit trypanosomes by strengthening the fly’s natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines the insect midgut and serves as a protective barrier that inhibits infection with pathogens. African trypanosomes must cross tsetse’s PM in order to establish an infection in the fly, and PM struc…
Glutathione content, glutathione S-transferase and γ-glutamyltranspeptidase activities in mid-gut gland of Procambarus clarkii: time course in the pr…
1988
Proteolytic Processing ofBacillus thuringiensisCryIIIA Toxin and Specific Binding to Brush-Border Membrane Vesicles ofLeptinotarsa decemlineata(Color…
1996
Abstract The mode of action of Bacillus thuringiensis insecticidal proteins in lepidopteran insects is known to involve five steps: ingestion, solubilization, protease activation, binding to midgut membrane receptors, and disruption of the intestinal membrane. Two of these steps, protease activation and binding to midgut membrane receptors, have been analyzed in the major potato pest, the coleoptera Leptinotarsa decemlineata (Colorado potato beetle). Unlike recently proposed, after treatment of the coleopteran-specific B. thuringiensis toxin CryIIIA with gut content from the Colorado potato beetle, a 42-kDa processing polypeptide has been identified. The study of binding to midgut membrane …
Investigation of the steps involved in the difference of susceptibility of Ephestia kuehniella and Spodoptera littoralis to the Bacillus thuringiensi…
2011
BUPM95 is a Bacillus thuringiensis subsp. kurstaki strain producing the Vip3Aa16 toxin with an interesting insecticidal activity against the Lepidopteran larvae Ephestia kuehniella. Study of different steps in the mode of action of this Vegetative Insecticidal Protein on the Mediterranean flour moth (E. kuehniella) was carried out in the aim to investigate the origin of the higher susceptibility of this insect to Vip3Aa16 toxin compared to that of the Egyptian cotton leaf worm Spodoptera littoralis. Using E. kuehniella gut juice, protoxin proteolysis generated a major band corresponding to the active toxin and another band of about 22kDa, whereas the activation of Vip3Aa16 by S. littoralis …
Resistance toBacillus thuringiensis Cry1Ac toxin in three strains ofHeliothis virescens: Proteolytic and SEM study of the larval midgut
1999
In a previous study, we demonstrated that resistance to Bacillus thuringiensis toxins in Heliothis virescens might be related to differences in the composition of the proteolytic extracts from insect midgut. There, we found specific proteolytic bands present in the gut extracts of the resistant strain and absent from the susceptible one. Here we report related facts using a new resistant strain (KCB) and a cross between the two strains used in our previous study. As would be expected, no quantitative differences in total proteolytic activity were found between the strains, although qualitative differences related to the presence or absence of specific proteolytic activity bands using SDS-PA…
Paenibacillus larvae Chitin-Degrading Protein PlCBP49 Is a Key Virulence Factor in American Foulbrood of Honey Bees
2014
Paenibacillus larvae, the etiological agent of the globally occurring epizootic American Foulbrood (AFB) of honey bees, causes intestinal infections in honey bee larvae which develop into systemic infections inevitably leading to larval death. Massive brood mortality might eventually lead to collapse of the entire colony. Molecular mechanisms of host-microbe interactions in this system and of differences in virulence between P. larvae genotypes are poorly understood. Recently, it was demonstrated that the degradation of the peritrophic matrix lining the midgut epithelium is a key step in pathogenesis of P. larvae infections. Here, we present the isolation and identification of PlCBP49, a mo…
Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis
2010
Summary The insect immune system is comprised of both humoral and cellular components that are mobilized in response to parasitic or pathogenic infections. Activation of the immune response implies a consid- erable expenditure of energy and that is why insects rely on inducible pathways that are activated after coming into contact with the pathogenic agent. Known as immune priming, insects can prolong the activation of the immune response and transmit their immune status to the next generation. Starting from a laboratory colony of the lepidopteran Spodoptera exigua and using the lytic zone assay as a measure of the immune status, we selected for a sub-colony with high levels of immune activ…
Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hübner) and Bombyx mori (L.): Sequences, mapping and expression
2010
Aminopeptidases N (APNs) are a class of ectoenzymes present in lepidopteran larvae midguts, involved in the Bacillus thuringiensis (Bt) toxins mode of action. In the present work, seven aminopeptidases have been cloned from the midgut of Ostrinia nubilalis, the major Lepidopteran corn pest in the temperate climates. Six sequences were identified as APNs because of the presence of the HEXXH(X)18E and GAMEN motifs, as well as the signal peptide and the GPI-anchor sequences. The remaining sequence did not contain the two cellular targeting signals, indicating it belonged to the puromycin-sensitive aminopeptidase (PSA) family. An in silico analysis allowed us to find orthologous sequences in Bo…
Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis by hybridization wit…
1999
We examined the abundance and spatial distribution of major phylogenetic groups of the domain Bacteria in hindguts of the Australian lower termite Mastotermes darwiniensis by using in situ hybridization with group-specific, fluorescently labeled, rRNA-targeted oligonucleotide probes. Between 32.0 +/- 7.2% and 52.3 +/- 8.2% of the DAPI-stained cells in different hindgut fractions were detected with probe EUB338, specific for members of the domain Bacteria. About 85% of the prokaryotic cells were associated with the flagellates of the thin-walled anterior region (P3a) and the thick wall of the posterior region (P3b/P4) of the hindgut, as shown by DAPI staining. At most, half of the EUB338-det…
Paratransgenic manipulation of tsetsemiR275alters the physiological homeostasis of the fly’s midgut environment
2021
AbstractTsetse flies are vectors of parasitic African trypanosomes (Trypanosomaspp.). Current disease control methods include fly-repelling pesticides, trapping flies, and chemotherapeutic treatment of infected people. Inhibiting tsetse’s ability to transmit trypanosomes by strengthening the fly’s natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines tsetse’s midgut. It protects the epithelial cells from the gut lumen content such as food and invading trypanosomes, which have to overcome this physical barrier to establish an infection. Bloodstream form trypanosomes shed variant surface glycopr…