Search results for "MIL"

showing 10 items of 29279 documents

"Figure 8" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron RdA 0-20% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 9" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 20-40% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 7" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 0-100% d+Au collisions. The nuclear modification factors $R_{dA}$ and $R_{AA}$ for minimum bias $d$+Au and Au+Au collisions, for the $\pi^{0}$ and $e^{\pm}_{HF}$. The two boxes on the right side of the plot represent the global uncertainties in the $d$+Au (left) and Au+Au (right) values of $N_{coll}$ . An additional common global scaling uncertainty of 9.7% on $R_{dA}$ and $R_{AA}$ from the $p+p$ reference data is omitted for clarity.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figures 3-6" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron yield, $d$+Au $\implies$ CHARGED X. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figure 10" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron $R_{dA}$ 40-60% $d$+Au collisions. The nuclear modification factor, $R_{dA}$, for electrons from open heavy flavor decays, for the (a) most central and (b) most peripheral centrality bins.

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

"Figures 1-2" of "Cold-nuclear-matter effcts on heavy-quark production in d+Au collisions at sqrt(s_NN)=200 GeV"

2023

Heavy flavor electron yield, Run-8 $p$ + $p$, $d$+Au collisions. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).

$d$ + Au$\implies$ CHARGED Xheavy flavor electronlight flavor mesonsmass-dependent Cronin enhancementRelativistic Heavy Ion Collider$p + p$ $\implies$ CHARGED Xheavy $D$ meson familyheavy flavor mesons200.0ppg131
researchProduct

Affective matching of odors and facial expressions in infants: shifting patterns between 3 and 7 months.

2016

Recognition of emotional facial expressions is a crucial skill for adaptive behavior. Past research suggests that at 5 to 7 months of age, infants look longer to an unfamiliar dynamic angry/happy face which emotionally matches a vocal expression. This suggests that they can match stimulations of distinct modalities on their emotional content. In the present study, olfaction-vision matching abilities were assessed across different age groups (3, 5 and 7 months) using dynamic expressive faces (happy vs. disgusted) and distinct hedonic odor contexts (pleasant, unpleasant and control) in a visual-preference paradigm. At all ages the infants were biased toward the disgust faces. This visual bias…

'Happy' faceMalegenetic structuresbehaviors[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionCognitive Neurosciencemedia_common.quotation_subjectEmotions[ SCCO.PSYC ] Cognitive science/PsychologyContext (language use)Olfaction050105 experimental psychologyDevelopmental psychologyimitationautonomic responsesemotion recognitionDevelopmental and Educational PsychologyHumans0501 psychology and cognitive sciencesbookEye Movement MeasurementsComputingMilieux_MISCELLANEOUSmedia_commonAdaptive behaviorFacial expressionyounginfants05 social sciencesintermodal perceptionInfantnewborn-infants7-month-old infantsconfigural informationbook.written_workDisgustFacial ExpressionSmellOdorFace[SCCO.PSYC]Cognitive science/PsychologyOdorantsFemaleImitationPsychology[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition050104 developmental & child psychologydiscriminationDevelopmental science
researchProduct

Józef Wacław Dąbrowski (1797–1862). Wołynianin w armii Królestwa Polskiego

2021

W artykule, w oparciu o nieznane i tym samym niewykorzystywane dotąd przez historyków wspomnienia, przedstawione zostały dzieciństwo i młodość Józefa Wacława Dąbrowskiego, oficera wojska Królestwa Polskiego, dowódcę w randze kapitana i majora oddziałów powstańczych jesienią 1830 – latem 1831 r. Koleje jego losów i kariera wojskowa są tak typowe, jak i odbiegające od znanych i omawianych w literaturze przedmiotu schematów. Typowe, gdyż dzięki wywodzeniu się z kręgów średnio zamożnego ziemiaństwa rozpoczął służbę wojskową od stopnia kadeta, aby przed upływem roku awansować na podchorążego i uzyskać skierowanie do szkoły podchorążych, stanowiącej niezbędny etap służby potrzebny do awansu ofice…

(Congress) Kingdom of Polandpowstanie listopadoweWołyńDąbrowski familyKrólestwo Polskie (kongresowe)Volhyniaarmy of the Kingdom of PolandPolish landed gentry of the 19th centurypolskie ziemiaństwo początku XIX w.Generals of the Kingdom of Polandwojsko Królestwa PolskiegoNovember Uprisingrodzina Dąbrowskichgeneralicja Królestwa PolskiegoEcha Przeszłości
researchProduct

La estación de la Miloquera (Marsà, Baix Priorat) y los "pares de hachas"

1970

ArtículoUNESCO::HISTORIA::Historia por épocas::Historia antiguaLa estación de la Miloquera (Marsà Baix Priorat) y los "pares de hachas" ArtículoHumanidadesLa estación de la Miloquera (Marsà Baix Priorat) y los &quotGrupo C:HISTORIA::Historia por épocas::Historia antigua [UNESCO]Historiapares de hachas&quot
researchProduct

Reinforcement learning approach to nonequilibrium quantum thermodynamics

2021

We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, require little knowledge of the dynamics itself and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally non-demanding approach to the control of non-equilibrium quantum thermodynamics. We successfully apply our methods to the case of single- …

---Computer scienceFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamics01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeQuantum stateSHORTCUTS0103 physical sciencesQuantum systemReinforcement learningStatistical physics010306 general physicsQuantum thermodynamicsCondensed Matter - Statistical MechanicsADIABATICITYQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Entropy productionENTROPYsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct