Search results for "MINERALIZATION"
showing 10 items of 312 documents
Single nanogranules preserve intracrystalline amorphicity in biominerals.
2015
We revisit the ultrastructural features of different calcareous biominerals and identify remarkable similarities: taxonomically very distant species show a common nanogranular structure, even if different extracellular secretion patterns are employed or calcium carbonate polymorphs formed. By these analyses, we elucidate the locus of the small fraction of intracrystalline organic matrix revealing its intergranular character and localize the intracrystalline amorphous calcium carbonate moiety commonly found in mesocrystalline biominerals and provide a first explanation for the pathway by which it is preserved.
Proteins as Functional Units of Biocalcification – An Overview
2016
High-throughput approaches such as genomics, transcriptomics and proteomics have led to the discovery of a larger set of biomineralization genes than previously foreseen. These gene lists are often difficult to decode in light of the current models of calcification. Here we overview the proteins available in UniProt (Universal Protein Resource), that were identified directly in metazoan calcium carbonate mineralized structures or known to have direct key-functions in calcification processes. Functional annotation of the protein datasets using Gene Ontology reveals that functions like carbohydrate binding, structural and catalytic activities (e.g. hydrolase) are commonly represented across t…
High microbial diversity promotes soil ecosystem functioning
2018
ABSTRACT In soil, the link between microbial diversity and carbon transformations is challenged by the concept of functional redundancy. Here, we hypothesized that functional redundancy may decrease with increasing carbon source recalcitrance and that coupling of diversity with C cycling may change accordingly. We manipulated microbial diversity to examine how diversity decrease affects the decomposition of easily degradable (i.e., allochthonous plant residues) versus recalcitrant (i.e., autochthonous organic matter) C sources. We found that a decrease in microbial diversity (i) affected the decomposition of both autochthonous and allochthonous carbon sources, thereby reducing global CO 2 e…
Cold Atmospheric Plasma Promotes Regeneration-Associated Cell Functions of Murine Cementoblasts In Vitro
2021
The aim of the study was to examine the efficacy of cold atmospheric plasma (CAP) on the mineralization and cell proliferation of murine dental cementoblasts. Cells were treated with CAP and enamel matrix derivates (EMD). Gene expression of alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), periostin (POSTN), osteopontin (OPN), osterix (OSX), collagen type I alpha 1 chain (COL1A1), dentin matrix acidic phosphoprotein (DMP)1, RUNX family transcription factor (RUNX)2, and marker of proliferation Ki-67 (KI67) was quantified by real-time PCR. Protein expression was analyzed by immunocytochemistry and ELISA. ALP activity was determined by ALP assay. Von Kossa and alizarin r…
Unveiling the evolution of bivalve nacre proteins by shell proteomics of Unionoidae.
2015
The formation of the molluscan shell nacre is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell forming tissue, the mantle. This so called “calcifying matrix” is a complex mixture of proteins and glycoproteins that is assembled and occluded within the mineral phase during the calcification process. While the importance of the calcifying matrix to shell formation has long been appreciated, the molecular basis that dictates nacre formation remains largely uncharacterized.Recent expressed sequence tag (EST) investigations of the freshwater mussels (Elliptio complanata and Villosa leinosa) provide an opportunity to further characterize the pr…
Evaluation of the erosive capacity of children’s beverages on primary teeth enamel: An in vitro study
2018
Background The consumption of acidified beverages, associated with lower mineralization of primary enamel, is the ideal combination for the development and progression of dental erosion. The objective of this study is to analyze the erosive capacity and the surface roughness of primary teeth enamel after exposure to three different brands of grape juices. Material and Methods Forty enamel blocks of primary teeth were obtained, attened and polished. They were submitted to initial surface roughness analysis (baseline), and randomly assigned into four groups (n = 10): NAT: natural grape juice (Campo Largo); IND: industrialized grape juice (Dell Vale Kapo); SOY: soy-based grape juice (Ades); an…
Gadolinium perturbs expression of skeletogenic genes, calcium uptake and larval development in phylogenetically distant sea urchin species
2018
Chelates of Gadolinium (Gd), a lanthanide metal, are employed as contrast agents for magnetic resonance imaging and are released into the aquatic environment where they are an emerging contaminant. We studied the effects of environmentally relevant Gd concentrations on the development of two phylogenetically and geographically distant sea urchin species: the Mediterranean Paracentrotus lividus and the Australian Heliocidaris tuberculata. We found a general delay of embryo development at 24 h post-fertilization, and a strong inhibition of skeleton growth at 48 h. Total Gd and Ca content in the larvae showed a time- and concentration-dependent increase in Gd, in parallel with a reduction in C…
The ‘Shellome’ of the Crocus Clam Tridacna crocea Emphasizes Essential Components of Mollusk Shell Biomineralization
2021
Molluscan shells are among the most fascinating research objects because of their diverse morphologies and textures. The formation of these delicate biomineralized structures is a matrix-mediated process. A question that arises is what are the essential components required to build these exoskeletons. In order to understand the molecular mechanisms of molluscan shell formation, it is crucial to identify organic macromolecules in different shells from diverse taxa. In the case of bivalves, however, taxon sampling in previous shell proteomics studies are focused predominantly on representatives of the class Pteriomorphia such as pearl oysters, edible oysters and mussels. In this study, we hav…
Hierarchical architecture of sponge spicules: biocatalytic and structure-directing activity of silicatein proteins as model for bioinspired applicati…
2016
Since the first description of the silicateins, a group of enzymes that mediate the formation of the amorphous, hydrated biosilica of the skeleton of the siliceous sponges, much progress has been achieved in the understanding of this biomineralization process. These discoveries include, beside the proof of the enzymatic nature of the sponge biosilica formation, the dual property of the enzyme, to act both as a structure-forming and structure-guiding protein, and the demonstration that the initial product of silicatein is a soft, gel-like material that has to undergo a maturation process during which it achieves its favorable physical-chemical properties allowing the development of various t…
SNPs in bone-related miRNAs are associated with the osteoporotic phenotype
2017
AbstractBiogenesis and function of microRNAs can be influenced by genetic variants in the pri-miRNA sequences leading to phenotypic variability. This study aims to identify single nucleotide polymorphisms (SNPs) affecting the expression levels of bone-related mature microRNAs and thus, triggering an osteoporotic phenotype. An association analysis of SNPs located in pri-miRNA sequences with bone mineral density (BMD) was performed in the OSTEOMED2 cohort (n = 2183). Functional studies were performed for assessing the role of BMD-associated miRNAs in bone cells. Two SNPs, rs6430498 in the miR-3679 and rs12512664 in the miR-4274, were significantly associated with femoral neck BMD. Further, we…