Search results for "MODEL SELECTION"

showing 10 items of 64 documents

Automatic variable selection for exposure-driven propensity score matching with unmeasured confounders.

2020

Multivariable model building for propensity score modeling approaches is challenging. A common propensity score approach is exposure-driven propensity score matching, where the best model selection strategy is still unclear. In particular, the situation may require variable selection, while it is still unclear if variables included in the propensity score should be associated with the exposure and the outcome, with either the exposure or the outcome, with at least the exposure or with at least the outcome. Unmeasured confounders, complex correlation structures, and non-normal covariate distributions further complicate matters. We consider the performance of different modeling strategies in …

Statistics and ProbabilityBiometryModels StatisticalComputer scienceModel selectionFeature selectionGeneral MedicineVariance (accounting)01 natural sciencesOutcome (game theory)Correlation010104 statistics & probability03 medical and health sciencesAutomation0302 clinical medicineCovariatePropensity score matchingStatisticsMultivariate Analysis030212 general & internal medicine0101 mathematicsStatistics Probability and UncertaintyPropensity ScoreCounterexampleBiometrical journal. Biometrische ZeitschriftREFERENCES
researchProduct

A generalized predictive criterion for model selection

2002

Given a random sample from some unknown model belonging to a finite class of parametric models, assume that the estimate of the density of a future observation is of interest San Martini & Spezzaferri (1984) proposed for this problem a predictive criterion based on the logarithmic utility function. The present authors investigate a generalization of this criterion that uses as a loss function an element of the class of α-divergences discussed by Ali & Silvey (1966) and Csiszar (1967). They also discuss briefly the case in which the class of models considered is not exhaustive. Un critere de prevision generalise pour la selection de modeles Supposons que l'on cherche a estimer la densite d'u…

Statistics and ProbabilityCombinatoricsmodel selectionModel selectionCalculusloss function; model selection; α-divergencesStatistics Probability and Uncertaintyα-divergencesMathematicsloss function
researchProduct

Bayesian regularization for flexible baseline hazard functions in Cox survival models.

2019

Fully Bayesian methods for Cox models specify a model for the baseline hazard function. Parametric approaches generally provide monotone estimations. Semi-parametric choices allow for more flexible patterns but they can suffer from overfitting and instability. Regularization methods through prior distributions with correlated structures usually give reasonable answers to these types of situations. We discuss Bayesian regularization for Cox survival models defined via flexible baseline hazards specified by a mixture of piecewise constant functions and by a cubic B-spline function. For those "semi-parametric" proposals, different prior scenarios ranging from prior independence to particular c…

Statistics and ProbabilityComputer scienceProportional hazards modelModel selectionBayesian probabilityPosterior probabilityMarkov chain Monte CarloBayes TheoremGeneral MedicineOverfittingSurvival AnalysisMarkov Chainssymbols.namesakeStatisticsCovariatesymbolsPiecewiseStatistics Probability and UncertaintyMonte Carlo MethodProportional Hazards ModelsBiometrical journal. Biometrische ZeitschriftREFERENCES
researchProduct

Extending conventional priors for testing general hypotheses in linear models

2007

We consider that observations come from a general normal linear model and that it is desirable to test a simplifying null hypothesis about the parameters. We approach this problem from an objective Bayesian, model-selection perspective. Crucial ingredients for this approach are 'proper objective priors' to be used for deriving the Bayes factors. Jeffreys-Zellner-Siow priors have good properties for testing null hypotheses defined by specific values of the parameters in full-rank linear models. We extend these priors to deal with general hypotheses in general linear models, not necessarily of full rank. The resulting priors, which we call 'conventional priors', are expressed as a generalizat…

Statistics and ProbabilityGeneralizationApplied MathematicsGeneral MathematicsModel selectionBayesian probabilityLinear modelBayes factorAgricultural and Biological Sciences (miscellaneous)Prior probabilityEconometricsStatistics Probability and UncertaintyGeneral Agricultural and Biological SciencesNull hypothesisStatistical hypothesis testingMathematicsBiometrika
researchProduct

Local bandwidth selection for kernel density estimation in a bifurcating Markov chain model

2020

International audience; We propose an adaptive estimator for the stationary distribution of a bifurcating Markov Chain onRd. Bifurcating Markov chains (BMC for short) are a class of stochastic processes indexed by regular binary trees. A kernel estimator is proposed whose bandwidths are selected by a method inspired by the works of Goldenshluger and Lepski [(2011), 'Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality',The Annals of Statistics3: 1608-1632). Drawing inspiration from dimension jump methods for model selection, we also provide an algorithm to select the best constant in the penalty. Finally, we investigate the performance of the…

Statistics and ProbabilityKernel density estimationadaptive estimationNonparametric kernel estimation01 natural sciences010104 statistics & probability[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]0502 economics and businessbinary treesApplied mathematicsbifurcating autoregressive processes0101 mathematics[MATH]Mathematics [math]050205 econometrics MathematicsBinary treeStationary distributionMarkov chainStochastic processModel selection05 social sciencesEstimator[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Adaptive estimatorStatistics Probability and UncertaintyGoldenshluger-Lepski methodology
researchProduct

Criteria for Bayesian model choice with application to variable selection

2012

In objective Bayesian model selection, no single criterion has emerged as dominant in defining objective prior distributions. Indeed, many criteria have been separately proposed and utilized to propose differing prior choices. We first formalize the most general and compelling of the various criteria that have been suggested, together with a new criterion. We then illustrate the potential of these criteria in determining objective model selection priors by considering their application to the problem of variable selection in normal linear models. This results in a new model selection objective prior with a number of compelling properties.

Statistics and ProbabilityMathematical optimization62C10Model selectiong-priorLinear modelMathematics - Statistics TheoryFeature selectionStatistics Theory (math.ST)Model selectionBayesian inferenceObjective model62J05Prior probability62J15FOS: MathematicsStatistics Probability and Uncertaintyobjective BayesSelection (genetic algorithm)variable selectionMathematicsThe Annals of Statistics
researchProduct

Model comparison and selection for stationary space–time models

2007

An intensive simulation study to compare the spatio-temporal prediction performances among various space-time models is presented. The models having separable spatio-temporal covariance functions and nonseparable ones, under various scenarios, are also considered. The computational performance among the various selected models are compared. The issue of how to select an appropriate space-time model by accounting for the tradeoff between goodness-of-fit and model complexity is addressed. Performances of the two commonly used model-selection criteria, Akaike information criterion and Bayesian information criterion are examined. Furthermore, a practical application based on the statistical ana…

Statistics and ProbabilityMathematical optimizationCovariance functionbusiness.industryApplied MathematicsModel selectionMultilevel modelKalman filterCovarianceMachine learningcomputer.software_genreComputational MathematicsComputational Theory and MathematicsGoodness of fitBayesian information criterionArtificial intelligenceAkaike information criterionbusinesscomputerMathematicsComputational Statistics & Data Analysis
researchProduct

Model selection in linear mixed-effect models

2019

Linear mixed-effects models are a class of models widely used for analyzing different types of data: longitudinal, clustered and panel data. Many fields, in which a statistical methodology is required, involve the employment of linear mixed models, such as biology, chemistry, medicine, finance and so forth. One of the most important processes, in a statistical analysis, is given by model selection. Hence, since there are a large number of linear mixed model selection procedures available in the literature, a pressing issue is how to identify the best approach to adopt in a specific case. We outline mainly all approaches focusing on the part of the model subject to selection (fixed and/or ra…

Statistics and ProbabilityMixed modelEconomics and EconometricsMathematical optimizationLinear mixed modelApplied MathematicsModel selectionMDLVariance (accounting)LASSOCovarianceGeneralized linear mixed modelMixed model selectionLasso (statistics)Shrinkage methodsModeling and SimulationMCPAICBICSettore SECS-S/01 - StatisticaSocial Sciences (miscellaneous)AnalysisSelection (genetic algorithm)Curse of dimensionality
researchProduct

Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous…

2012

In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedica…

Statistics and ProbabilityModels StatisticalEpidemiologyModel selectionMultivariable calculusExplained variationSpline (mathematics)Logistic ModelsSample size determinationSample SizeMultivariate AnalysisLinear regressionStatisticsCovariateHumansComputer SimulationCategorical variableMathematicsStatistics in Medicine
researchProduct

A decision support system methodology for forecasting of time series based on soft computing

2006

Exponential procedures are widely used as forecasting techniques for inventory control and business planning. A number of modifications to the generalized exponential smoothing (Holt-Winters) approach to forecasting univariate time series is presented, which have been adapted into a tool for decision support systems. This methodology unifies the phases of estimation and model selection into just one optimization framework which permits the identification of robust solutions. This procedure may provide forecasts from different versions of exponential smoothing by fitting the updated formulas of Holt-Winters and selects the best method using a fuzzy multicriteria approach. The elements of the…

Statistics and ProbabilitySoft computingMathematical optimizationDecision support systembusiness.industryApplied MathematicsModel selectionExponential smoothingUnivariateFuzzy logicNonlinear programmingComputational MathematicsComputational Theory and MathematicsArtificial intelligencebusinessPhysics::Atmospheric and Oceanic PhysicsSmoothingMathematicsComputational Statistics & Data Analysis
researchProduct