Search results for "MOLIBDÊNIO"

showing 2 items of 2 documents

Use of Hydrogen Molybdenum Bronze in Vacuum‐Deposited Perovskite Solar Cells

2019

Herein, the dehydration of a hydrogen molybdenum bronze (HYMoO3), converting it to molybdenum oxide (MoOX), is explored toward the development of perovskite solar cells (PSCs) for the first time. H0.11MoO3 bronze is synthesized, characterized, and deposited on indium tin oxide (ITO) under different concentrations and annealing conditions for in situ conversion into MoOX with appropriate oxygen vacancies. Vacuum‐deposited PSCs are fabricated using the as‐produced MoOX hole injection layers, achieving a power conversion efficiency of 17.3% (average) for the optimal device. The latter has its stability and reproducibility tested, proving the robustness and affordability of the developed hole t…

Materials scienceHydrogenMetallurgyMolybdenum oxidechemistry.chemical_elementMolybdenum bronzechemistry.chemical_compoundGeneral EnergychemistryMOLIBDÊNIOMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

Molecular Passivation of MoO3: Band Alignment and Protection of Charge Transport Layers in Vacuum-Deposited Perovskite Solar Cells

2019

Vacuum-deposition of perovskite solar cells can achieve efficiencies rivalling solution-based methods and it allows for more complex device stacks. MoO3 has been used to enhance carrier extraction to the transparent bottom electrode in a p-i-n configuration, here we show that by inserting an organic charge transport molecule it can also be used on the top of a perovskite absorber in a n-i-p configuration. This strategy enables the first vacuum-deposited perovskite solar cells with metal oxides as charge transporting layers for both electrons and holes leading to power conversion efficiency > 19 %.

Materials sciencePassivationbusiness.industryGeneral Chemical EngineeringExtraction (chemistry)Charge (physics)02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesVacuum depositionMaterials ChemistryOptoelectronicsMOLIBDÊNIO0210 nano-technologybusinessMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct