Search results for "MONODROMY"

showing 4 items of 44 documents

Geometric représentations of the braid groups

2010

We show that the morphisms from the braid group with n strands in the mapping class group of a surface with a possible non empty boundary, assuming that its genus is smaller or equal to n/2 are either cyclic morphisms (their images are cyclic groups), or transvections of monodromy morphisms (up to multiplication by an element in the centralizer of the image, the image of a standard generator of the braid group is a Dehn twist, and the images of two consecutive standard generators are two Dehn twists along two curves intersecting in one point). As a corollary, we determine the endomorphisms, the injective endomorphisms, the automorphisms and the outer automorphism group of the following grou…

[ MATH ] Mathematics [math]rigidité[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]morphisme de monodromieification de Nielsen Thurstonbraid groupGroup Theory (math.GR)[MATH] Mathematics [math]groupe de difféotopies[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]monodromieFOS: Mathematicssurface[MATH]Mathematics [math]représentation géométriquetransvectionmonodromymapping class groupMathematics::Geometric TopologyrigidityNielsen-Thurstongroupe de tressesAMS Subject Classification: Primary 20F38 57M07. Secondary 57M99 20F36 20E36 57M05.mapping groupMathematics - Group Theorygroupe de diffétopies
researchProduct

A note on the Lawrence-Krammer-Bigelow representation

2002

A very popular problem on braid groups has recently been solved by Bigelow and Krammer, namely, they have found a faithful linear representation for the braid group B_n. In their papers, Bigelow and Krammer suggested that their representation is the monodromy representation of a certain fibration. Our goal in this paper is to understand this monodromy representation using standard tools from the theory of hyperplane arrangements. In particular, we prove that the representation of Bigelow and Krammer is a sub-representation of the monodromy representation which we consider, but that it cannot be the whole representation.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsLinear representation[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)52C3001 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]52C35Mathematics - Geometric TopologyMathematics::Group TheoryMathematics::Algebraic Geometry[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics20F36 52C35 52C30 32S22braid groups0101 mathematicsMathematics::Representation TheoryComputingMilieux_MISCELLANEOUSMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT][MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]linear representations010102 general mathematicsRepresentation (systemics)FibrationSalvetti complexesGeometric Topology (math.GT)Mathematics::Geometric TopologyHyperplaneMonodromy010307 mathematical physicsGeometry and TopologyMathematics - Group Theory32S22
researchProduct

Sur le rôle des singularités hamiltoniennes dans les systèmes contrôlés : applications en mécanique quantique et en optique non-linéaire.

2012

This thesis has two goals: the first one is to improve the control techniques in quantum mechanics, and more specifically in NMR, by using the tools of geometric optimal control. The second one is the study of the influence of Hamiltonian singularities in controlled systems. The chapter about optimal control study three classical problems of NMR : the inversion problem, the influence of the radiation damping term, and the steady state technique. Then, we apply the geometric optimal control to the problem of the population transfert in a three levels quantum system to recover the STIRAP scheme.The two next chapters study Hamiltonian singularities. We show that they allow to control the polar…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Nonlinear optics[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Polarization attractionContrôle optimal géométrique[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]Quantum control[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Geometric optimal controloptique non-linéaireHamiltonian singularities[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]monodromie hamiltonienneattraction de polarisation[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]singularités hamiltoniennes[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]contrôle quantique[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]Hamiltonian monodromy
researchProduct

Abelian Integrals: From the Tangential 16th Hilbert Problem to the Spherical Pendulum

2016

In this chapter we deal with abelian integrals. They play a key role in the infinitesimal version of the 16th Hilbert problem. Recall that 16th Hilbert problem and its ramifications is one of the principal research subject of Christiane Rousseau and of the first author. We recall briefly the definition and explain the role of abelian integrals in 16th Hilbert problem. We also give a simple well-known proof of a property of abelian integrals. The reason for presenting it here is that it serves as a model for more complicated and more original treatment of abelian integrals in the study of Hamiltonian monodromy of fully integrable systems, which is the main subject of this chapter. We treat i…

symbols.namesakePure mathematicsIntegrable systemMonodromyInfinitesimalSlater integralsSpherical pendulumsymbolsAbelian groupHamiltonian (quantum mechanics)Mathematics
researchProduct