Search results for "MONOPOLES"

showing 10 items of 14 documents

Three-dimensional skyrmions in spin-2 Bose–Einstein condensates

2017

We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose-Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross-Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted…

spinor condensateSUPERFLUID HE-3Angular momentumSYMMETRYFOS: Physical sciencesGeneral Physics and AstronomyBose-Einstein condensation114 Physical sciences01 natural sciencesInstability010305 fluids & plasmaslaw.inventionPHASESKNOTSlaw0103 physical sciencesField theory (psychology)magnetismikvanttifysiikka010306 general physicsVORTICESSpin-½Condensed Matter::Quantum GasesPhysicsBose–Einstein condensationBiaxial nematicCondensed matter physicsSkyrmionMONOPOLESCondensed Matter::Mesoscopic Systems and Quantum Hall EffectFIELD-THEORYSymmetry (physics)skyrmionQuantum Gases (cond-mat.quant-gas)Condensed Matter - Quantum GasesBose–Einstein condensateNew Journal of Physics
researchProduct

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

2020

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these longlived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP…

HIGH-ENERGYbeyond the Standard Modellarge hadron colliderPhysics::Instrumentation and DetectorsPROTON-PROTON COLLISIONSPhysics beyond the Standard Modelbeyond the standard model01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)high-luminosity lhcHigh Energy Physics - Phenomenology (hep-ph)MAGNETIC MONOPOLESlong-lived [particle]high-energy collider experimentsdecay: vertexscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]long-lived particlesQCproposed [detector]Physicslifetimedark gauge forcesLarge Hadron ColliderCMSROOT-S=13 TEVroot-s=13 tevPhysicsnew physics: search forscale: electroweak interactionhep-phATLASelectroweak interaction [scale]vertex [decay]upgrade [detector]High Energy Physics - Experiment; High Energy Physics - Experiment; High Energy Physics - Phenomenologydetector: upgradeSettore FIS/02 - Fisica Teorica Modelli e Metodi Matematiciprimary [vertex]ddc:High Energy Physics - PhenomenologyCERN LHC CollLarge Hadron Colliderbaryon asymmetryvertex: primaryLHCcolliding beams [p p]exclusion limitspp collisionsParticle Physics - ExperimentsignatureNuclear and High Energy PhysicsParticle physicsp p: scatteringCERN LabPAIR PRODUCTIONcollider phenomenologyreviewFOS: Physical sciencesDARK GAUGE FORCES530search for [new physics]BARYON ASYMMETRY0103 physical sciencesddc:530010306 general physicsnumerical calculationsParticle Physics - PhenomenologyEXCLUSION LIMITSmagnetic monopolesPP COLLISIONS010308 nuclear & particles physicshep-exbackgroundbibliographyshowersMAJORANA NEUTRINOSCollisiontracksLHC-Bdetector: proposedhigh-luminosity LHCpair productionMATHUSLAPhysics and Astronomy[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]proton-proton collisionshigh-energymajorana neutrinosparticle: long-livedp p: colliding beamsPhysics BSMexperimental results
researchProduct

Q7-branes and their coupling to IIB supergravity

2007

We show how, by making use of a new basis of the IIB supergravity axion-dilaton coset, SL(2,R)/SO(2), 7-branes that belong to different conjugacy classes of the duality group SL(2,R) naturally couple to IIB supergravity with appropriate source terms characterized by an SL(2,R) charge matrix Q. The conjugacy classes are determined by the value of the determinant of Q. The (p,q) 7-branes are the branes in the conjugacy class detQ = 0. The 7-branes in the conjugacy class detQ > 0 are labelled by three numbers (p,q,r) which parameterize the matrix Q and will be called Q7-branes. We construct the full bosonic Wess--Zumino term for the Q7-branes. In order to realize a gauge invariant coupling …

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsPure mathematicsSupergravityFOS: Physical sciencesMONOPOLESInvariant (physics)p-branesBRANESFIELDSINSTANTONSABELIAN BORN-INFELDConjugacy classDOMAIN-WALLSHigh Energy Physics - Theory (hep-th)DUALITYD-branesBrane cosmologyCoset6 DIMENSIONS
researchProduct

Light majoron cold dark matter from topological defects and the formation of boson stars

2019

We show that for a relatively light majoron ($\ll 100 $ eV) non-thermal production from topological defects is an efficient production mechanism. Taking the type I seesaw as benchmark scheme, we estimate the primordial majoron abundance and determine the required parameter choices where it can account for the observed cosmological dark matter. The latter is consistent with the scale of unification. Possible direct detection of light majorons with future experiments such as PTOLEMY and the formation of boson stars from the majoron dark matter are also discussed.

PhysicsmonopolesParticle physicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)cosmological neutrinosdomain wallsCosmic stringsDark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCosmology of Theories beyond the SMTopological defectCosmic stringStarsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometryparticle physics – cosmology connectionMajoronBosonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Three-dimensional splitting dynamics of giant vortices in Bose-Einstein condensates

2018

We study the splitting dynamics of giant vortices in dilute Bose-Einstein condensates by numerically integrating the three-dimensional Gross-Pitaevskii equation in time. By taking advantage of tetrahedral tiling in the spatial discretization, we decrease the error and increase the reliability of the numerical method. An extensive survey of vortex splitting symmetries is presented for different aspect ratios of the harmonic trapping potential. The symmetries of the splitting patterns observed in the simulated dynamics are found to be in good agreement with predictions obtained by solving the dominant dynamical instabilities from the corresponding Bogoliubov equations. Furthermore, we observe…

YEE-LIKE SCHEMESDiscretizationGROSS-PITAEVSKII EQUATIONEFFICIENTFOS: Physical sciencesHarmonic (mathematics)GASES114 Physical sciences01 natural sciences010305 fluids & plasmaslaw.inventionsymbols.namesakelaw0103 physical sciencesSUPERFLOW010306 general physicsNUMERICAL-SOLUTIONVORTEXta113PhysicsCondensed Matter::Quantum GasesSTABILITYta114Condensed Matter::OtherNumerical analysisTime evolutionMONOPOLESBose-Einstein condensatesVortexMAXWELLS EQUATIONSGross–Pitaevskii equationClassical mechanicsMaxwell's equationsQuantum Gases (cond-mat.quant-gas)symbolsCondensed Matter - Quantum Gasesvortices in superfluidsBose–Einstein condensate
researchProduct

Search for relativistic magnetic monopoles with the ANTARES neutrino telescope

2012

Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 ¿ 10¿17 and 8.9 ¿ 10¿17 cm¿2 s¿1 sr¿1 for monopoles with velocity ß ¿ 0.625.

FLUXMuon backgroundParticle physicsGauge modelMagnetic monopolesAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleneutrino telescopes; antares; magnetic monopoleFOS: Physical sciencesCosmic ray01 natural sciencesNuclear physics0103 physical sciencesNeutronFIELD010306 general physicsDETECTORCherenkov radiationZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)NeutronsPhysicsSPECTRUMAtmospheric neutrinosMagnetic monopoleANTARES:Física::Acústica [Àrees temàtiques de la UPC]MuonCharged particles010308 nuclear & particles physicsAstronomy and AstrophysicsMonopols magnèticsUpper limitsNeutrino detectorMass scaleFISICA APLICADA[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Física nuclearData setsNeutrino telescopes[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)TelescopesAstroparticle Physics
researchProduct

Search for ultrarelativistic magnetic monopoles with the Pierre Auger Observatory

2016

We present a search for ultra-relativistic magnetic monopoles with the Pierre Auger Observatory. Such particles, possibly a relic of phase transitions in the early universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultra-relativistic magnetic monopoles ra…

FLUORESCENCE YIELDAstronomymagnetic monopolemagnetic fieldAstrophysics7. Clean energy01 natural sciencesObservatoryUHE Cosmic Raysair-showerMonte Carlo010303 astronomy & astrophysicsMagnetic Monopolesmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicscritical phenomenaFLUORESCENCE YIELD; ENERGY LOSS; DETECTORAugerMagnetic fieldobservatoryLorentz factorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGsymbolsFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical Phenomenaspatial distribution [showers]LorentzENERGY LOSSatmosphere [showers]energyFLUXNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]airmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaUHE [cosmic radiation]Magnetic monopoleFOS: Physical sciencesCosmic rayNuclear physicssymbols.namesakecosmic rays0103 physical sciencesddc:530High Energy PhysicsDETECTORCiencias Exactasfluorescence [detector]Pierre Auger Observatorybackground010308 nuclear & particles physicsFísicaASTROFÍSICAUniversefluxultrarelativistic magnetic monopolesAir shower13. Climate actionExperimental High Energy PhysicsrelativisticgalaxyENERGY-LOSS
researchProduct

Looking for magnetic monopoles at LHC with diphoton events

2012

Magnetic monopoles have been a subject of interest since Dirac established the relation between the existence of monopoles and charge quantization. The intense experimental search carried thus far has not met with success. The Large Hadron Collider is reaching energies never achieved before allowing the search for exotic particles in the TeV mass range. In a continuing effort to discover these rare particles we propose here other ways to detect them. We study the observability of monopoles and monopolium, a monopole-antimonopole bound state, at the Large Hadron Collider in the $\gamma \gamma$ channel for monopole masses in the range 500-1000 GeV. We conclude that LHC is an ideal machine to …

Quantum electrodynamicsScattering cross-sectionPhysicsmonopolesParticle physicsLarge Hadron ColliderAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::LatticephotonMagnetic monopoleFOS: Physical sciencesGeneral Physics and AstronomyFísicaHigh Energy Physics - ExperimentmonopoliumNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)Quantization (physics)High Energy Physics - Phenomenology (hep-ph)Bound stateIdeal machinedualityHigh Energy Physics::Experimentproton
researchProduct

Search for Magnetic Monopoles and Stable High-Electric-Charge Objects in 13 Tev Proton-Proton Collisions with the ATLAS Detector

2020

We thank CERN for the very successful operation of the LHC, aswell as the support staff fromour institutionswithout whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; FWF, BMWFW, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, FAPESP, Brazil; NSERC, CFI, NRC, Canada; CERN; CONICYT, Chile; CAS, NSFC, MOST, China; COLCIENCIAS, Colombia; VSC CR, MSMT CR, MPO CR, Czech Republic; DNSRC, DNRF, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; MPG, HGF, BMBF, Germany; GSRT, Greece; RGC, Hong Kong SAR, Hong Kong China; Benoziyo Center, ISF, Israel; INFN, Italy; JSPS, MEXT, Japan; JINR; CNRST, Morocco; NWO, Nether…

electric [charge]Drell-Yan process:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Magnetic monopolesProton13000 GeV-cmsPhysics::Instrumentation and Detectorselectromagnetic [calorimeter]magnetic [charge]General Physics and Astronomy7. Clean energy01 natural scienceschannel cross section: upper limitHigh Energy Physics - Experimentmagnetic monopole: massSubatomär fysikparticle: stabilityHigh Energy Physics - Experiment (hep-ex)magnetic monopole: pair productionSubatomic Physicsscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]tracking detectorstability [particle]0 [spin]1/2 [spin]Particle productionHadron collidersPhysicsRange (particle radiation)Large Hadron Colliderupper limit [channel cross section]DetectorSettore FIS/01 - Fisica Sperimentalemass [magnetic monopole]ATLAS3. Good health:Nuclear and elementary particle physics: 431 [VDP]CERN LHC Collhigh [ionization]ATLAS Detectorslower limit [mass]atlas; lhc; higgs;colliding beams [p p]pair production [magnetic monopole]Particle Physics - ExperimentsignatureDirect Productionp p: scatteringHigh-Ionizationdirect production [magnetic monopole]530 PhysicsCiências Naturais::Ciências Físicasmass: lower limit:Ciências Físicas [Ciências Naturais]Magnetic monopolespin: 0FOS: Physical sciencesLHC ATLAS High Energy Physicsddc:500.2Electromagnetic CalorimeterElectric chargeComputer Science::Digital LibrariesChargeNuclear physicsionization: high0103 physical sciencesTransition Radiation Trackersddc:530High Energy Physicsspin: 1/2010306 general physicsCiencias ExactasATLAS Collaborationcharge: magneticmagnetic monopolesS028CScience & Technologyhep-excharge: electricFísicaCharge (physics)triggerPair productioncalorimeter: electromagneticProton Proton CollisionsExperimental High Energy PhysicsMagnetic ChargesElementary Particles and FieldsHigh Energy Physics::Experimenttransition radiationHadron-hadron collisionsp p: colliding beamsmagnetic monopole: direct productionexperimental resultsPhysical Review Letters
researchProduct

Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC

2017

MoEDAL is designed to identify new physics in the form of long-lived highly-ionising particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC run-1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges excee…

Magnetic monopolesProtonMagnetismPhysics beyond the Standard ModelGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - Experimentlaw.inventionCOLLIDERHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)STOPPING-POWERlawPhysics02 Physical SciencesLarge Hadron ColliderSTABLE MASSIVE PARTICLESPhysicsMagnetismDrell–Yan processhep-phPersistent currents3. Good healthHigh Energy Physics - PhenomenologyPhysical SciencesELECTROWEAK MONOPOLEParticle Physics - ExperimentGeneral PhysicsMagnetometerPhysics MultidisciplinaryMagnetic monopoleFOS: Physical sciencesNuclear track detector114 Physical sciencesNuclear physicsPhysics and Astronomy (all)Tellurium compoundsHigh energy physics Magnetism Magnetometers Highly ionizing particles Magnetic charges Magnetic monopoles Nuclear track detector Passive detection Persistent currents Proton proton collisions Trapping techniques Tellurium compounds0103 physical sciencesHigh energy physics010306 general physicsColliderIONIZING PARTICLESScience & TechnologyProton proton collisionshep-ex010308 nuclear & particles physicsMagnetometers Highly ionizing particlesMagnetic chargesTrapping techniquesPassive detectionSTATES
researchProduct