Search results for "MULTIPLICITY"

showing 10 items of 296 documents

Multiple Solutions for Fractional Boundary Value Problems

2018

Variational methods and critical point theorems are used to discuss existence and multiplicity of solutions for fractional boundary value problem where Riemann–Liouville fractional derivatives and Caputo fractional derivatives are used. Some conditions to determinate nonnegative solutions are presented. An example is given to illustrate our results.

010102 general mathematicsMathematical analysisMultiple solutionVariational methodMultiplicity (mathematics)01 natural sciencesCritical point (mathematics)Fractional differential equationFractional calculus010101 applied mathematicsMathematics (all)Pharmacology (medical)Boundary value problem0101 mathematicsCritical point theoremMathematics
researchProduct

Collective Infection of Cells by Viral Aggregates Promotes Early Viral Proliferation and Reveals a Cellular-Level Allee Effect

2018

In addition to the conventional release of free, individual virions, virus dispersal can involve multi-virion assemblies that collectively infect cells. However, the implications of collective infection for viral fitness remain largely unexplored. Using vesicular stomatitis virus, here, we compare the fitness of free versus saliva-aggregated viral particles. We find that aggregation has a positive effect on early progeny production, conferring a fitness advantage relative to equal numbers of free particles in most cell types. The advantage of aggregation resides, at least partially, in increasing the cellular multiplicity of infection. In mouse embryonic fibroblasts, the per capita, short-t…

0301 basic medicineCell typevirusesCellBiologyVirus ReplicationArticleGeneral Biochemistry Genetics and Molecular BiologyVirusMice03 medical and health sciencessymbols.namesakeMultiplicity of infectionChlorocebus aethiopsmedicineAnimalsHumansSelection GeneticSalivaVero CellsAllee effectInnate immune systemVesiculovirusbiology.organism_classificationEmbryonic stem cellCell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureA549 CellsVesicular stomatitis virussymbolsFemaleGeneral Agricultural and Biological SciencesCurrent Biology
researchProduct

Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release.

2020

Viral infections are often accompanied by the induction of autophagy as an intrinsic cellular defense mechanism. Herpesviruses have developed strategies to evade autophagic degradation and to manipulate autophagy of the host cells to their benefit. Here we addressed the role of macroautophagy/autophagy in human cytomegalovirus replication and for particle morphogenesis. We found that proteins of the autophagy machinery localize to cytoplasmic viral assembly compartments and enveloped virions in the cytoplasm. Surprisingly, the autophagy receptor SQSTM1/p62 was also found to colocalize with HCMV capsids in the nucleus of infected cells. This finding indicates that the autophagy machinery int…

0301 basic medicineHuman cytomegalovirusCytoplasmEpstein-Barr Virus InfectionsvirusesCytomegalovirusBiology03 medical and health sciencesMultiplicity of infectionmedicineXenophagyAutophagyMorphogenesisHumansMolecular BiologyCytopathic effect030102 biochemistry & molecular biologyAutophagyCell BiologyBECN1biochemical phenomena metabolism and nutritionFibroblastsmedicine.diseaseVirus ReleaseCell biology030104 developmental biologyCytomegalovirus InfectionsMAP1LC3AResearch PaperAutophagy
researchProduct

Collective properties of viral infectivity

2018

Individual virions typically fail to infect cells. Such decoupling between virions and infectious units is most evident in multicomponent and other segmented viruses, but is also frequent in non-segmented viruses. Despite being a well-known observation, the causes and implications of low single-virion infectivity often remain unclear. In principle, this can originate from intrinsic genetic and/or structural virion defects, but also from host infection barriers that limit early viral proliferation. Hence, viruses may have evolved strategies to increase the per-virion likelihood of establishing successful infections. This can be achieved by adopting spread modes that elevate the multiplicity …

0301 basic medicineInfectivityvirusesBiologyVirus Physiological PhenomenaCellular levelbiochemical phenomena metabolism and nutritionVirus InternalizationVirus ReplicationVirologyMicrovesiclesDefective virusArticle03 medical and health sciences030104 developmental biologyMultiplicity of infectionViral replicationVirion bindingVirus DiseasesVirologyMicrobial InteractionsVirus Physiological Phenomena
researchProduct

Collective Infectious Units in Viruses

2017

Increasing evidence indicates that viruses do not simply propagate as independent virions among cells, organs, and hosts. Instead, viral spread is often mediated by structures that simultaneously transport groups of viral genomes, such as polyploid virions, aggregates of virions, virion-containing proteinaceous structures, secreted lipid vesicles, and virus-induced cell-cell contacts. These structures increase the multiplicity of infection, independently of viral population density and transmission bottlenecks. Collective infectious units may contribute to the maintenance of viral genetic diversity, and could have implications for the evolution of social-like virus-virus interactions. These…

0301 basic medicineMicrobiology (medical)virusesBiologyMicrobiologyArticle03 medical and health sciencesMultiplicity of infectionImmunityVirologyAnimalsGeneticsGenetic diversityVirionGenetic VariationBiological EvolutionVirologyMicrovesiclesComplementation030104 developmental biologyInfectious DiseasesVirus DiseasesViral genomesViral spreadLipid vesicleBaculoviridaeTrends in Microbiology
researchProduct

Multiplicity- and dependency-adjusted p-values for control of the family-wise error rate

2016

Abstract Under the multiple testing framework, we propose the multiplicity- and dependency-adjustment method (MADAM) which transforms test statistics into adjusted p -values for control of the family-wise error rate. For demonstration, we apply the MADAM to data from a genetic association study.

0301 basic medicineStatistics and ProbabilityWord error rateMultiplicity (mathematics)Familywise error rateMadam01 natural sciences010104 statistics & probability03 medical and health sciences030104 developmental biologyStatisticsMultiple comparisons problemŠidák correctionPer-comparison error rate0101 mathematicsStatistics Probability and UncertaintyMathematicsStatistical hypothesis testingStatistics & Probability Letters
researchProduct

Optimized production and purification of Coxsackievirus B1 vaccine and its preclinical evaluation in a mouse model.

2017

Coxsackie B viruses are among the most common enteroviruses, causing a wide range of diseases. Recent studies have also suggested that they may contribute to the development of type 1 diabetes. Vaccination would provide an effective way to prevent CVB infections, and the objective of this study was to develop an efficient vaccine production protocol for the generation of novel CVB vaccines. Various steps in the production of a formalin-inactivated Coxsackievirus B1 (CVB1) vaccine were optimized including the Multiplicity Of Infection (MOI) used for virus amplification, virus cultivation time, type of cell growth medium, virus purification method and formulation of the purified virus. Safety…

0301 basic medicineformalin inactivationviruksetvirusesDrug Evaluation PreclinicalPolysorbatesmedicine.disease_causeAntibodies ViralMice0302 clinical medicineMultiplicity of infectionImmunogenicity VaccinevaccineChlorocebus aethiops030212 general & internal medicineImmunogenicityVaccinationVaccinationInfectious Diseasescoxsackievirus B1Molecular MedicineFemaleUltracentrifugeVirus CultivationCoxsackievirus InfectionsBiologyCoxsackievirusta3111VirusMicrobiology03 medical and health sciencesFormaldehydemedicineAnimalsCVB1Vero CellscoxsackievirusGeneral VeterinaryGeneral Immunology and Microbiologyrokotteetta1182Public Health Environmental and Occupational HealthViral Vaccinesbiology.organism_classificationVirologyAntibodies NeutralizingVirus CultivationEnterovirus A HumanDisease Models Animal030104 developmental biologyVaccines Inactivatedvirus purificationEnterovirusVaccine
researchProduct

Lack of evidence of mimivirus replication in human PBMCs

2018

The Acanthamoeba polyphaga mimivirus (APMV) was first isolated during a pneumonia outbreak in Bradford, England, and since its discovery many research groups devoted efforts to understand whether this virus could be associated to human diseases, in particular clinical signs and symptoms of pneumonia. In 2013, we observed cytopathic effect in amoebas (rounding and lysis) inoculated with APMV inoculated PBMCs (peripheral blood mononuclear cell) extracts, and at that point we interpreted those results as mimivirus replication in human PBMCs. Based on these results we decided to further investigate APMV replication in human PBMCs, by transmission electron microscopy (TEM) and qPCR. No viral fac…

0301 basic medicinevirukset030106 microbiologyImmunologymimivirusReal-Time Polymerase Chain ReactionVirus ReplicationMicrobiologyPeripheral blood mononuclear cellVirus03 medical and health sciencesMultiplicity of infectionBacterial ProteinsMicroscopy Electron TransmissionacanthamoebaViral factoryHumansCytopathic effectMimivirusbiologyDNA Helicasesta1182biology.organism_classificationVirologyHelicase GeneAcanthamoeba030104 developmental biologyInfectious DiseasesDNA ViralPBMCsLeukocytes MononuclearMimiviridaeMicrobes and Infection
researchProduct

Membrane-Associated Enteroviruses Undergo Intercellular Transmission as Pools of Sibling Viral Genomes

2019

Summary Some viruses are released from cells as pools of membrane-associated virions. By increasing the multiplicity of infection (MOI), this type of collective dispersal could favor viral cooperation, but also the emergence of cheater-like viruses such as defective interfering particles. To better understand this process, we examined the genetic diversity of membrane-associated coxsackievirus infectious units. We find that infected cells release membranous structures (including vesicles) that contain 8–21 infectious particles on average. However, in most cases (62%–93%), these structures do not promote the co-transmission of different viral genetic variants present in a cell. Furthermore, …

0301 basic medicinevirusesPopulationViral transmissionGenome ViralBiologyCoxsackievirusmedicine.disease_causeGenomeArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicineMultiplicity of infectionMicroscopy Electron TransmissionmedicineHumanseducationlcsh:QH301-705.5social evolutionCollective infectious unitEnterovirusGeneticsSocial evolutionGenetic diversityeducation.field_of_studyenteroviruscollective infectious unitTransmission (medicine)viral transmissionCell MembraneVirionGenetic VariationVirus InternalizationExtracellular vesiclesbiology.organism_classification3. Good health030104 developmental biologylcsh:Biology (General)EnterovirusBiological dispersalextracellular vesicles030217 neurology & neurosurgeryHeLa CellsCell Reports
researchProduct

2019

Viruses frequently spread among cells or hosts in groups, with multiple viral genomes inside the same infectious unit. These collective infectious units can consist of multiple viral genomes inside the same virion, or multiple virions inside a larger structure such as a vesicle. Collective infectious units deliver multiple viral genomes to the same cell simultaneously, which can have important implications for viral pathogenesis, antiviral resistance, and social evolution. However, little is known about why some viruses transmit in collective infectious units, whereas others do not. We used a simple evolutionary approach to model the potential costs and benefits of transmitting in a collect…

0303 health sciencesCancer Research030306 microbiologyvirusesViral pathogenesisAntiviral resistanceBiologyVirologyGenome03 medical and health sciencesInfectious DiseasesMultiplicity of infectionViral replicationViral genomesVirologyViral evolution030304 developmental biologyVirus Research
researchProduct