Search results for "MXenes"

showing 4 items of 4 documents

2020 Roadmap on two-dimensional nanomaterials for environmental catalysis

2019

Abstract Environmental catalysis has drawn a great deal of attention due to its clean ways to produce useful chemicals or carry out some chemical processes. Photocatalysis and electrocatalysis play important roles in these fields. They can decompose and remove organic pollutants from the aqueous environment, and prepare some fine chemicals. Moreover, they also can carry out some important reactions, such as O2 reduction reaction (ORR), O2 evolution reaction (OER), H2 evolution reaction (HER), CO2 reduction reaction (CO2RR), and N2 fixation (NRR). For catalytic reactions, it is the key to develop high-performance catalysts to meet the demand for targeted reactions. In recent years, two-dimen…

Chemical processMaterials scienceLayered double hydroxidesNanotechnology02 engineering and technologyGeneral Chemistryengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBlack phosphorus0104 chemical sciencesNanomaterialsCatalysisPhotocatalysisengineeringMetal-organic framework0210 nano-technologyMXenesChinese Chemical Letters
researchProduct

Strain Sensing Coatings for Large Composite Structures Based on 2D MXene Nanoparticles

2021

Real-time strain monitoring of large composite structures such as wind turbine blades requires scalable, easily processable and lightweight sensors. In this study, a new type of strain-sensing coating based on 2D MXene nanoparticles was developed. A Ti3C2Tz MXene was prepared from Ti3AlC2 MAX phase using hydrochloric acid and lithium fluoride etching. Epoxy and glass fibre–reinforced composites were spray-coated using an MXene water solution. The morphology of the MXenes and the roughness of the substrate were characterised using optical microscopy and scanning electron microscopy. MXene coatings were first investigated under various ambient conditions. The coating experienced no sign…

MXenes; coatings; strain sensors; electrical properties; cyclic loadingMaterials scienceScanning electron microscopeComposite numbercoatings02 engineering and technologySurface finishengineering.materiallcsh:Chemical technology010402 general chemistry7. Clean energy01 natural sciencesBiochemistryArticleMXenesAnalytical ChemistryCoatingElectrical resistance and conductancelcsh:TP1-1185strain sensorsElectrical and Electronic EngineeringComposite materialInstrumentationcyclic loadingEpoxy021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesGauge factorvisual_artelectrical propertiesengineeringvisual_art.visual_art_medium0210 nano-technologyMXenesSensors
researchProduct

Numerical investigation of the mechanical properties of a novel hybrid polymer composite reinforced with graphene and MXene nanosheets

2020

Abstract This paper presents a numerical investigation of the elastic properties of a novel hybrid polymer composite reinforced with graphene and MXene nanosheets. A finite element computational model was developed to analyze the mechanical properties of a new polymer hybrid composite reinforced with MXene and graphene taking into account the properties of the 2D nanosheets, different aspect ratios, placement options and volume fractions of nanoreinforcements, as well as the interaction effects between the nanofillers and the surrounding polymer matrix. Using the developed numerical model, the influences of the interface layer properties, MXene and graphene aspect ratio, alignment and volum…

Materials scienceGeneral Computer SciencePolymer nanocompositeComposite numberGeneral Physics and Astronomy02 engineering and technology010402 general chemistryOrthotropic material01 natural scienceslaw.inventionlawGeneral Materials ScienceComposite materialchemistry.chemical_classificationGraphenehybrid composites MXene graphene numerical simulation elastic propertiesGeneral ChemistryPolymer021001 nanoscience & nanotechnologyAspect ratio (image)0104 chemical sciencesComputational MathematicschemistryMechanics of MaterialsVolume fraction0210 nano-technologyMXenesComputational Materials Science
researchProduct

Wettability of MXene and its interfacial adhesion with epoxy resin

2021

Abstract The surface energies of MXene nanofillers critically affect the mechanical properties and durability of any polymer-based devices and composites to which these fillers are applied. In this context, this study comprehensively investigates Ti3C2Tz MXenes prepared via the hydrochloric acid/lithium fluoride etching of Ti3AlC2. The surface energy values of 10-layer MXene coatings were evaluated to be between 47.98 and 64.48 mJ/m2 as per contact-angle measurements. The wettability properties were found to depend on the number of coating layers and the liquids used. Additionally, the coating roughness was evaluated by using atomic force microscopy. The effectiveness of MXenes as a reinfor…

Materials scienceScanning electron microscopeContext (language use)02 engineering and technologyEpoxyAdhesionengineering.material010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurface energy0104 chemical sciencesCoatingvisual_artvisual_art.visual_art_mediumengineeringGeneral Materials ScienceWettingComposite material0210 nano-technologyMXenesMaterials Chemistry and Physics
researchProduct