Search results for "MYOSTATIN"
showing 10 items of 37 documents
Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative ca…
2016
AbstractDoxorubicin is a widely used and effective chemotherapy drug. However, cardiac and skeletal muscle toxicity of doxorubicin limits its use. Inhibiting myostatin/activin signalling can prevent muscle atrophy, but its effects in chemotherapy-induced muscle wasting are unknown. In the present study we investigated the effects of doxorubicin administration alone or combined with activin receptor ligand pathway blockade by soluble activin receptor IIB (sACVR2B-Fc). Doxorubicin administration decreased body mass, muscle size and bone mineral density/content in mice. However, these effects were prevented by sACVR2B-Fc administration. Unlike in many other wasting situations, doxorubicin indu…
2019
Colorectal cancer (CRC) and cachexia are associated with the gut microbiota and microbial surface molecules. We characterized the CRC-associated microbiota and investigated whether cachexia affects the microbiota composition. Further, we examined the possible relationship between the microbial surface molecule flagellin and CRC. CRC cells (C26) were inoculated into mice. Activin receptor (ACVR) ligands were blocked, either before tumor formation or before and after, to increase muscle mass and prevent muscle loss. The effects of flagellin on C26-cells were studied in vitro. The occurrence of similar phenomena were studied in murine and human tumors. Cancer modulated the gut microbiota witho…
Are the Myokines the Mediators of Physical Activity-Induced Health Benefits?
2016
BACKGROUND: The concept of the muscle as a secretory organ, developed during the last decades, partially answers to the issue of how the crosstalk between skeletal muscle and distant tissues happens. The beneficial effects of exercise transcend the simple improved skeletal muscle functionality: systemic responses to exercise have been observed in distal organs like heart, kidney, brain and liver. Increasing data have accumulated regarding the synthesis, the kinetics of release and the biological roles of muscular cytokines, now called myokines. The most recent techniques have meaningfully improved the identification of the muscle cell secretome, but several issues regarding the extent of se…
Muscle and serum metabolomes are dysregulated in colon-26 tumor-bearing mice despite amelioration of cachexia with activin receptor type 2B ligand bl…
2019
Cancer-associated cachexia reduces survival, which has been attenuated by blocking the activin receptor type 2B (ACVR2B) ligands in mice. The purpose of this study was to unravel the underlying physiology and novel cachexia biomarkers by use of the colon-26 (C26) carcinoma model of cancer cachexia. Male BALB/c mice were subcutaneously inoculated with C26 cancer cells or vehicle control. Tumor-bearing mice were treated with vehicle (C26+PBS) or soluble ACVR2B either before (C26+sACVR/b) or before and after (C26+sACVR/c) tumor formation. Skeletal muscle and serum metabolomics analysis was conducted by gas chromatography-mass spectrometry. Cancer altered various biologically functional groups …
Activin Receptor Ligand Blocking and Cancer Have Distinct Effects on Protein and Redox Homeostasis in Skeletal Muscle and Liver
2019
Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1–2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1–2 days after a single sAC…
Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress
2016
Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, …
2020
Alongside in vivo models, a simpler and more mechanistic approach is required to study the effects of myostatin on skeletal muscle because myostatin is an important negative regulator of muscle size. In this study, myostatin was administered to murine (C2C12) and human (CHQ) myoblasts and myotubes. Canonical and noncanonical signaling downstream to myostatin, related ligands, and their receptor were analyzed. The effects of tumorkines were analyzed after coculture of C2C12 and colon cancer-C26 cells. The effects of myostatin on canonical and noncanonical signaling were strongly reduced in C2C12 cells after differentiation. This may be explained by increased follistatin, an endogenous blocke…
2018
Background Cancer cachexia increases morbidity and mortality, and blocking of activin receptor ligands has improved survival in experimental cancer. However, the underlying mechanisms have not yet been fully uncovered. Methods The effects of blocking activin receptor type 2 (ACVR2) ligands on both muscle and non-muscle tissues were investigated in a preclinical model of cancer cachexia using a recombinant soluble ACVR2B (sACVR2B-Fc). Treatment with sACVR2B-Fc was applied either only before the tumour formation or with continued treatment both before and after tumour formation. The potential roles of muscle and non-muscle tissues in cancer cachexia were investigated in order to understand th…
2020
Abstract Objective Cancer cachexia and muscle loss are associated with increased morbidity and mortality. In preclinical animal models, blocking activin receptor (ACVR) ligands has improved survival and prevented muscle wasting in cancer cachexia without an effect on tumour growth. However, the underlying mechanisms are poorly understood. This study aimed to identify cancer cachexia and soluble ACVR (sACVR) administration-evoked changes in muscle proteome. Methods Healthy and C26 tumour-bearing (TB) mice were treated with recombinant sACVR. The sACVR or PBS control were administered either prior to the tumour formation or by continued administration before and after tumour formation. Muscle…
MicroRNAs in Muscle: Characterizing the Powerlifter Phenotype
2017
Powerlifters are the epitome of muscular adaptation and are able to generate extreme forces. The molecular mechanisms underpinning the significant capacity for force generation and hypertrophy are not fully elucidated. MicroRNAs (miRs) are short non-coding RNA sequences that control gene expression via promotion of transcript breakdown and/or translational inhibition. Differences in basal miR expression may partially account for phenotypic differences in muscle mass and function between powerlifters and untrained age-matched controls. Muscle biopsies were obtained from m. vastus lateralis of 15 national level powerlifters (25.1 ± 5.8 years) and 13 untrained controls (24.1 ± 2.0 years). The …