Search results for "Magnetic domain"

showing 10 items of 100 documents

Production and study of spinor condensates of <sup>87</sup>Rb released from a magnetic trap

2009

We report on our study of spinor condensates in the F=2 state of 87Rb produced in an atomic cloud expanding after releasing from a magnetic trap. The experiments are conducted in the setup described in Ref. [1].

Condensed Matter::Quantum GasesPhysicsSpinorMagnetic momentMagnetic domainMagnetic separationchemistry.chemical_elementMagnetic perturbationRubidiumchemistryMagnetic trapAtom opticsPhysics::Atomic PhysicsAtomic physicsCLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference
researchProduct

Single-crystal EPR spectroscopy of a Co(II) single-chain magnet

2013

Abstract An electron paramagnetic resonance (EPR) study of a single crystal of Co II -based single-chain magnets (SCM) is presented. Discrete resonant absorptions are associated to the presence of magnetic domains within the chains of finite lengths determined by a competition between intra-chain exchange interactions and thermally excited single spin fluctuations. The results are interpreted as a transition from single spin dynamics at high temperature ( T  ∼20 K), associated to the Kramers doublet ground state of the individual Co II ions, to archetypical SCM dynamics at low temperatures, where intra-chain correlations form long magnetic domains, whose average length is imposed by the con…

Condensed matter physicsMagnetic domainChemistryMolecular physicslaw.inventionIonInorganic ChemistrylawExcited stateMagnetMaterials ChemistryPhysical and Theoretical ChemistryGround stateElectron paramagnetic resonanceSpin (physics)Single crystalPolyhedron
researchProduct

Crystal field effects and magnetic properties of Dy2Te3

1995

Abstract Magnetic susceptibility and magnetization measurements are presented for Dy 2 Te 3 . By means of crystal field calculations the energy levels of ground state and crystal field potentials for Dy 3+ ions have been evaluated taking the exchange interactions into account.

Condensed matter physicsMagnetic domainMagnetic energyChemistryMechanical EngineeringDemagnetizing fieldMetals and AlloysMagnetic susceptibilityPhysics::Fluid DynamicsCrystalParamagnetismMagnetizationMechanics of MaterialsMaterials ChemistryGround stateJournal of Alloys and Compounds
researchProduct

Reliable Propagation of Magnetic Domain Walls in Cross Structures for Advanced Multiturn Sensors

2017

[EN] We develop and analyze an advanced concept for a domain-wall-based sensing of rotations. Moving domain walls in n closed loops with n - 1 intersecting convolutions by rotating fields, we are able to sense n rotations. By combining loops with coprime numbers of rotations, we create a sensor system allowing for the total counting of millions of turns of a rotating applied magnetic field. We analyze the operation of the sensor and identify the intersecting cross structures as the critical component for reliable operation. Specifically, depending on the orientation of the applied field angle with the magnetization in the branches of the cross, a domain wall is found to propagate in an unwa…

Coprime integersMagnetic domainComputer scienceMagnetismMicromagnetismGeneral Physics and Astronomy02 engineering and technologySense (electronics)021001 nanoscience & nanotechnologyTopology01 natural sciencesElectromagnetic coilPower consumption0103 physical sciencessortComputational physicsMagnetic sensorTwist010306 general physics0210 nano-technologyRotation (mathematics)Domain wall
researchProduct

Correlation between spin structure oscillations and domain wall velocities

2013

Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the e…

DYNAMICSMOTIONMagnetic domainNanowireGeneral Physics and Astronomy02 engineering and technologyNANOWIRESSpin structure01 natural sciencesArticleMAGNETIC-FIELDSGeneral Biochemistry Genetics and Molecular BiologyNuclear magnetic resonancePosition (vector)0103 physical sciencesddc:530010306 general physicsPhysicsMultidisciplinaryCondensed matter physicsDynamics (mechanics)General Chemistry021001 nanoscience & nanotechnologySTATEMagnetic fieldDomain wall (magnetism)Physics and AstronomyDomain (ring theory)0210 nano-technology
researchProduct

Ultrafast Optical Demagnetization manipulates Nanoscale Spin Structure in Domain Walls

2012

During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic dem…

DYNAMICSMagnetic domainGeneral Physics and AstronomyMAGNETIZATION REVERSALPhysics::OpticsLarge scale facilities for research with photons neutrons and ionsNanotechnology02 engineering and technologyElectronFILMS01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyOptical pumping0103 physical sciencesddc:530010306 general physicsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]MultidisciplinaryCondensed matter physicsSpins[PHYS.PHYS]Physics [physics]/Physics [physics]Demagnetizing fieldALLOYGeneral Chemistry021001 nanoscience & nanotechnologyPicosecondFemtosecondX-RAYLASER0210 nano-technologyUltrashort pulse
researchProduct

Electrically Driven Magnetic Domain Wall Rotation in Multiferroic Heterostructures to Manipulate Suspended On-Chip Magnetic Particles

2015

In this work, we experimentally demonstrate deterministic electrically driven, strain-mediated domain wall (DW) rotation in ferromagnetic Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3)O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates. While simultaneously imaging the Ni rings with X-ray magnetic circular dichroism photoemission electron microscopy, an electric field is applied across the PMN-PT substrate that induces strain in the ring structures, driving DW rotation around the ring toward the dominant PMN-PT strain axis by the inverse magnetostriction effect. The DW rotation we observe is analytically predicted using a fully coupled micromagnetic/elastodynamic multiphysics simulation, which v…

Domain wall (magnetism)Materials scienceFerromagnetismMagnetic domainCondensed matter physicsMagnetic circular dichroismElectric fieldGeneral EngineeringGeneral Physics and AstronomyMagnetic nanoparticlesGeneral Materials ScienceMagnetostrictionRotationACS Nano
researchProduct

The effect of manufacturing tolerances on a tubular linear ferrite motor

2015

This study presents a numerical and experimental study on the effect of permanent magnet tolerances on the performances of a Tubular Linear Ferrite Motor. The statistical distribution of the magnetic characteristic of a set of commercial magnets is obtained experimentally while the performances of a the tubular motor are numerically evaluated. The performances that have been considered are: cogging force, end effect force and generated thrust. It has been shown that: 1)the statistical variability of the magnets modifies the time behavior of the cogging force; 2)the value of both the end effect cogging force and the generated thrust are directly linked to the values of then remanence field o…

EngineeringFinite element methodManufacturing toleranceSettore ING-IND/11 - Fisica Tecnica AmbientaleMagnetic domainbusiness.industryElectrical engineeringMechanical engineeringThrustTubular Linear Ferrite MotorCogging torqueSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciForgingMagnetic fluxIndustrial and Manufacturing EngineeringRemanenceMagnetSliderFerrite (magnet)Electrical and Electronic Engineeringbusiness
researchProduct

Spin torques and magnetic texture dynamics driven by the supercurrent in superconductor/ferromagnet structures

2018

We introduce the general formalism to describe spin torques induced by the supercurrents injected from the adjacent superconducting electrodes into the spin-textured ferromagnets. By considering the adiabatic limit for the equal-spin superconducting correlations in the ferromagnet we show that the supercurrent can generate both the field-like spin transfer torque and the spin-orbital torque. These dissipationless spin torques are expressed through the current-induced corrections to the effective field derived from the system energy. The general formalism is applied to show that the supercurrent can either shift or move the magnetic domain walls depending on their structure and the type of s…

Josephson effectmagneettiset ominaisuudetMagnetic domainFOS: Physical sciences02 engineering and technology01 natural sciencessuprajohteetSuperconductivity (cond-mat.supr-con)Condensed Matter::Superconductivity0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Torque010306 general physicsAdiabatic processSuperconductivityPhysicsspintronicsCondensed matter physicsta114Condensed Matter - Mesoscale and Nanoscale Physicsdomain wallsCondensed Matter - SuperconductivitySupercurrentspin transfer torque021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect3. Good healthFormalism (philosophy of mathematics)FerromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct

Atomic-scale magnetic domain walls in quasi-one-dimensional Fe nanostripes.

2001

Fe nanostripes on W(110) are investigated by Kerr magnetometry and spin-polarized scanning tunneling microscopy (SP-STM). An Arrhenius law is observed for the temperature dependent magnetic susceptibility indicating a one-dimensional magnetic behavior. The activation energy for creating antiparallel spin blocks indicates extremely narrow domain walls with a width on a length scale of the lattice constant. This is confirmed by imaging the domain wall by SP-STM. This information allows the quantification of the exchange stiffness and the anisotropy constant.

Length scaleMaterials scienceCondensed matter physicsMagnetic domainGeneral Physics and AstronomySpin polarized scanning tunneling microscopyActivation energyMagnetic susceptibilitylaw.inventionCondensed Matter::Materials ScienceLattice constantlawCondensed Matter::SuperconductivityMagnetic force microscopeScanning tunneling microscopePhysical review letters
researchProduct