Search results for "Magnetic-Resonance"
showing 10 items of 22 documents
Low level activity thresholds for changes in NMR biomarkers and genes in high risk subjects for type 2 diabetes
2017
AbstractOur objectives were to determine if there are quantitative associations between amounts and intensities of physical activities (PA) on NMR biomarkers and changes in skeletal muscle gene expressions in subjects with high risk for type 2 diabetes (T2D) performing a 3-month PA intervention. We found that PA was associated with beneficial biomarker changes in a factor containing several VLDL and HDL subclasses and lipids in principal component analysis (P = <0.01). Division of PA into quartiles demonstrated significant changes in NMR biomarkers in the 2nd - 4th quartiles compared to the 1st quartile representing PA of less than 2850 daily steps (P = 0.0036). Mediation analysis of PA-…
Quantitative Imaging of D-2-Hydroxyglutarate in Selected Histological Tissue Areas by a Novel Bioluminescence Technique
2016
Abstract Patients with malignant gliomas have a poor prognosis with average survival of less than one year. Whereas in other tumor entities the characteristics of tumor metabolism are successfully used for therapeutic approaches, such developments are very rare in brain tumors, notably in gliomas. One metabolic feature characteristic of gliomas, in particular diffuse astrocytomas and oligodendroglial tumors, is the variable content of D-2-hydroxyglutarate (D2HG), a metabolite, which was discovered first in this tumor entity. D2HG is generated in large amounts due to various “gain-of–function” mutations in the isocitrate dehydrogenases IDH-1 and IDH-2. Meanwhile, D2HG has been detected in se…
Pulse EPR methods for studying chemical and biological samples containing transition metals
2006
This review discusses the application of pulse EPR to the characterization of disordered systems, with an emphasis on samples containing transition metals. Electron nuclear double-resonance (ENDOR), electron-spin-echo envelope-modulation (ESEEM), and double electron-electron resonance (DEER) methodologies are outlined. The theory of field modulation is outlined, and its application is illustrated with DEER experiments. The simulation of powder spectra in EPR is discussed, and strategies for optimization are given. The implementation of this armory of techniques is demonstrated on a rich variety of chemical systems: several porphyrin derivatives that are found in proteins and used as model s…
Electrocardiographic Imaging for Atrial Fibrillation: A Perspective From Computer Models and Animal Experiments to Clinical Value
2021
[EN] Electrocardiographic imaging (ECGI) is a technique to reconstruct non-invasively the electrical activity on the heart surface from body-surface potential recordings and geometric information of the torso and the heart. ECGI has shown scientific and clinical value when used to characterize and treat both atrial and ventricular arrhythmias. Regarding atrial fibrillation (AF), the characterization of the electrical propagation and the underlying substrate favoring AF is inherently more challenging than for ventricular arrhythmias, due to the progressive and heterogeneous nature of the disease and its manifestation, the small volume and wall thickness of the atria, and the relatively large…
Graph cut-based method for segmenting the left ventricle from MRI or echocardiographic images
2017
International audience; In this paper, we present a fast and interactive graph cut method for 3D segmentation of the endocardial wall of the left ventricle (LV) adapted to work on two of the most widely used modalities: magnetic resonance imaging (MRI) and echocardiography. Our method accounts for the fundamentally different nature of both modalities: 3D echocardiographic images have a low contrast, a poor signal-to-noise ratio and frequent signal drop, while MR images are more detailed but also cluttered and contain highly anisotropic voxels. The main characteristic of our method is to work in a 3D Bezier coordinate system instead of the original Euclidean space. This comes with several ad…
Segmentation Integrating Watershed and Shape Priors Applied to Cardiac Delayed Enhancement MR Images
2017
International audience; Background: In recent years, there has been a rapid rise in the use of shape priors applied to segmentation process of medical images. Previous approaches on left ventricle segmentation from Delayed-Enhancement Magnetic Resonance Imaging (DE-MRI) have focused on the extraction of myocardium or just diseased region in short axis orientation. However these studies did not take into account the segmentation of non-diseased myocardium from DE-MRI. The segmentation of non-diseased myocardium from DE-MRI, has some useful applications. For instance it can simplify the PET-MR registration process.Methods: This paper presents a novel semi-automatic segmentation method of non-…
Inverse Conformational Selection in Lipid–Protein Binding
2021
International audience; Interest in lipid interactions with proteins and other biomolecules is emerging not only in fundamental biochemistry but also in the field of nanobiotechnology where lipids are commonly used, for example, in carriers of mRNA vaccines. The outward-facing components of cellular membranes and lipid nanoparticles, the lipid headgroups, regulate membrane interactions with approaching substances, such as proteins, drugs, RNA, or viruses. Because lipid headgroup conformational ensembles have not been experimentally determined in physiologically relevant conditions, an essential question about their interactions with other biomolecules remains unanswered: Do headgroups excha…
Combined proton NMR wideline and NMR relaxometry to study SOM-water interactions of cation-treated soils
2013
Abstract Focusing on the idea that multivalent cations affect SOM matrix and surface, we treated peat and soil samples by solutions of NaCl, CaCl2 or AlCl3. Water binding was characterized with low field 1H-NMR-relaxometry (20 MHz) and 1H wideline NMR spectroscopy (400 MHz) and compared to contact angles. From 1H wideline, we distinguished mobile water and water involved in water molecule bridges (WaMB). Large part of cation bridges (CaB) between SOM functional groups are associated with WaMB. Unexpectedly, 1H NMRrelaxometry relaxation rates suggest that cross-linking in the Al-containing peat is not stronger than that by Ca. The relation between percentage of mobile water and WaMB water in…
Luminescence of gamma-radiation-induced defects in alpha-quartz
2004
Optical transitions associated with gamma-radiation-induced defects in crystalline a-quartz were investigated by photoluminescence excited by both pulsed synchrotron radiation and steady-state light. After a 10 MGy gamma-dose we observed two emissions at 4.9 eV (ultraviolet band) and 2.7 eV (blue band) excitable in the range of the induced absorption band at 7.6 eV. These two luminescence bands show a different temperature dependence: the ultraviolet band becomes bright below 80 K; the blue band increases below 180 K, but drops down below 80 K. Both emissions decay in a timescale of a few ns under pulsed excitation, however the blue band could also be observed in slow recombination processe…
Liquid structure and dynamics in the choline acetate:urea 1:2 deep eutectic solvent
2021
We report on the thermodynamic, structural, and dynamic properties of a recently proposed deep eutectic solvent, formed by choline acetate (ChAc) and urea (U) at the stoichiometric ratio 1:2, hereinafter indicated as ChAc:U. Although the crystalline phase melts at 36-38 degrees C depending on the heating rate, ChAc:U can be easily supercooled at sub-ambient conditions, thus maintaining at the liquid state, with a glass-liquid transition at about -50 degrees C. Synchrotron high energy x-ray scattering experiments provide the experimental data for supporting a reverse Monte Carlo analysis to extract structural information at the atomistic level. This exploration of the liquid structure of ChA…