Search results for "Magnetohydrodynamics"

showing 10 items of 206 documents

Semi-global simulations of the magneto-rotational instability in core collapse supernovae

2009

Possible effects of magnetic fields in core collapse supernovae rely on an efficient amplification of the weak pre-collapse fields. It has been suggested that the magneto-rotational instability (MRI) leads to rapid field growth. Although MRI studies exist for accretion discs, the application of their results to core collapse supernovae is inhibited as the physics of supernova cores is substantially different from that of accretion discs. We address the problem of growth and saturation of the MRI by means of semi-global simulations, which combine elements of global and local simulations by taking the presence of global background gradients into account and using a local computational grid. W…

PhysicsResistive touchscreenMagnetohydrodynamics (MHD):ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Otras [UNESCO]Astrophysics (astro-ph)supernovae : general [Stars]magnetic fields [Stars]FOS: Physical sciencesAstronomy and AstrophysicsAngular velocityMechanicsAstrophysicsMagnetohydrodynamics (MHD); Instabilities; Stars : supernovae : general; Stars : magnetic fieldsAstrophysicsInstabilityMagnetic fieldSupernovaAmplitudeSpace and Planetary ScienceDispersion relationInstabilitiesUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::OtrasUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::EstrellasSaturation (chemistry):ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas [UNESCO]
researchProduct

3D YSO accretion shock simulations: a study of the magnetic, chromospheric and stochastic flow effects

2013

AbstractThe structure and dynamics of young stellar object (YSO) accretion shocks depend strongly on the local magnetic field strength and configuration, as well as on the radiative transfer effects responsible for the energy losses. We present the first 3D YSO shock simulations of the interior of the stream, assuming a uniform background magnetic field, a clumpy infalling gas, and an acoustic energy flux flowing at the base of the chromosphere. We study the dynamical evolution and the post-shock structure as a function of the plasma-beta (thermal pressure over magnetic pressure). We find that a strong magnetic field (~hundreds of Gauss) leads to the formation of fibrils in the shocked gas …

PhysicsShock waveAccretion (meteorology)Shock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaFluxAstronomy and AstrophysicsAstrophysicsshock waves[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]magnetohydrodynamics (MHD)Magnetic fieldSettore FIS/05 - Astronomia E AstrofisicaaccretionSpace and Planetary Scienceradiative transferinstabilitiesaccretion magnetohydrodynamics (MHD) radiative transfer shock waves instabilitiesRadiative transferAstrophysics::Solar and Stellar AstrophysicsMagnetic pressureChromosphereAstrophysics::Galaxy Astrophysics
researchProduct

Probing the Internal Structure of Magnetized, Relativistic Jets with Numerical Simulations

2016

From an observational point of view, unveiling the physical processes behind the nature of the jets emanating from radio-loud AGN demands the resolution of the structure across the jet with the highest angular resolutions. Relying on a magneto-fluid dynamical description, numerical simulations can help to characterize the internal structure of jets (transversal structure, magnetic field structure, internal shocks, etc.). In the first part of the paper, we shall discuss equilibrium models of magnetized, relativistic, infinite, axisymmetric jets with rotation propagating through a homogeneous, static, unmagnetized ambient medium. Then, these transversal equilibrium profiles will be used to bu…

PhysicsShock waveJet (fluid)Internal energyMagnetic energyMHDlcsh:Astronomy010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical Phenomenagalaxies: activeAstronomy and Astrophysicsshock wavesgalaxies: jets01 natural sciencesmethods: numericalComputational physicsMagnetic fieldlcsh:QB1-991galaxies: active; galaxies: jets; methods: numerical; MHD; shock wavesRelativistic beamingClassical mechanicsAstrophysical jet0103 physical sciencesMagnetohydrodynamics010303 astronomy & astrophysicsGalaxies
researchProduct

Modeling magnetohydrodynamics and non equilibrium SoHO/UVCS line emission of CME shocks

2008

We provide a guideline to interpret the UVCS emission lines (in particular O VI and Si XII) during shock wave propagation in the outer solar corona. We use a numerical MHD model performing a set of simulations of shock waves generated in the corona and from the result we compute the plasma emission for the O VI and Si XII including the effects of NEI. We analyze the radiative and spectral properties of our model with the support of a detailed radiation model including Doppler dimming and an analytical model for shocks, and, finally, we synthesize the expected O VI 1032A line profile. We explain several spectral features of the observations like the absence of discontinuities in the O VI emi…

PhysicsShock waveMagnetohydrodynamics (MHD)Sun: coronaSun: coronal mass ejections (CMEs)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsPlasmaAstrophysicsShock (mechanics)Magnetic fieldSpace and Planetary SciencePhysics::Space PhysicsRadiative transferAstrophysics::Solar and Stellar AstrophysicsEmission spectrumMagnetohydrodynamicsAstrophysics::Galaxy AstrophysicsLine (formation)
researchProduct

Magnetohydrodynamic Modeling of the Accretion Shocks in Classical T Tauri Stars: The Role of Local Absorption in the X-Ray Emission

2014

We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues we investigate whether a correct treatment of the local absorption by the surrounding medium …

PhysicsShock wave[PHYS]Physics [physics]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and Astrophysicsaccretion accretion disks magnetohydrodynamics: MHD shock waves stars: pre-main sequence X-rays: starsAstrophysicsPlasmaAstrophysics::Cosmology and Extragalactic AstrophysicsAccretion (astrophysics)Spectral lineLuminosityT Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAbsorption (electromagnetic radiation)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ChromosphereSolar and Stellar Astrophysics (astro-ph.SR)ComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy Astrophysics
researchProduct

Colloquium: Laboratory experiments on hydromagnetic dynamos

2002

Cosmic magnetic fields, including the fields of planets, stars, and galaxies, are believed to be caused by dynamo action in moving electrically conducting fluids. While the theory and numerics of hydromagnetic dynamos have flourished during recent decades, an experimental validation of the effect was missing until recently. We sketch the long history towards a working laboratory dynamo. We report on the first successful experiments at the sodium facilities in Riga and Karlsruhe, and on other experiments which are carried out or planned at various places in the world.

PhysicsStarsCOSMIC cancer databasePlanetAstrophysics::Solar and Stellar AstrophysicsGeneral Physics and AstronomyAstrophysicsExperimental validationMagnetohydrodynamicsGalaxyPhysics::GeophysicsDynamoReviews of Modern Physics
researchProduct

Magnetohydrodynamic experiments on cosmic magnetic fields

2008

It is widely known that cosmic magnetic fields, i.e. the fields of planets, stars, and galaxies, are produced by the hydromagnetic dynamo effect in moving electrically conducting fluids. It is less well known that cosmic magnetic fields play also an active role in cosmic structure formation by enabling outward transport of angular momentum in accretion disks via the magnetorotational instability (MRI). Considerable theoretical and computational progress has been made in understanding both processes. In addition to this, the last ten years have seen tremendous efforts in studying both effects in liquid metal experiments. In 1999, magnetic field self-excitation was observed in the large scale…

PhysicsStructure formationApplied MathematicsAstrophysics (astro-ph)Fluid Dynamics (physics.flu-dyn)Computational MechanicsFOS: Physical sciencesPhysics - Fluid DynamicsAstrophysicsInstabilityComputational physicsMagnetic fieldPhysics::Fluid DynamicsMagnetorotational instabilityDynamo theoryMagnetohydrodynamicsCouette flowDynamo
researchProduct

Radiation Magnetohydrodynamic Models and Spectral Signatures of Plasma Flows Accreting onto Classical T Tauri Stars

2019

CTTSs are young stars accreting mass from their circumstellar disks. The material falls into the star at free fall velocity and hits the stellar surface producing shocks, that heat the plasma at few million degrees. In the last twenty years the X-ray and UV observations of these systems have raised several questions. In particular, the observed X-ray luminosity is systematically below the value predicted by theoretical models, and the UV lines show complex profiles which cannot be easily interpreted with current accretion models based only on magnetohydrodynamical effects. To tackle these problems we modeled the structure and the dynamics of the plasma in the impact region using 3D magnetoh…

PhysicsT Tauri starStarsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsAstrophysicsIrradiationMagnetohydrodynamic drivePlasmaRadiationMagnetohydrodynamicsAstrophysics::Galaxy AstrophysicsAccretion (astrophysics)
researchProduct

Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics

2015

An overview of grid-based numerical methods used in relativistic hydrodynamics (RHD) and magnetohydrodynamics (RMHD) is presented. Special emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods. Results of a set of demanding test bench simulations obtained with different numerical methods are compared in an attempt to assess the present capabilities and limits of the various numerical strategies. Applications to three astrophysical phenomena are briefly discussed to motivate the need for and to demonstrate the success of RHD and RMHD simulations in their understanding. The review further provides FORTRAN programs to compute the exact solution…

PhysicsTest benchRelativistic hydrodynamics (RHD)FortranNumerical analysisReview ArticleGridlaw.inventionsymbols.namesakeRiemann problemExact solutions in general relativitylawPhysics::Space PhysicssymbolsCartesian coordinate systemStatistical physicsMagnetohydrodynamicscomputerRelativistic magnetohydrodynamics (RMHD)computer.programming_languageLiving Reviews in Computational Astrophysics
researchProduct

Building a numerical relativistic non-ideal magnetohydrodynamics code for astrophysical applications

2013

AbstractIncluding resistive effects in relativistic magnetized plasmas is a challenging task, that a number of authors have recently tackled employing different methods. From the numerical point of view, the difficulty in including non-ideal terms arises from the fact that, in the limit of very high plasma conductivity (i.e., close to the ideal MHD limit), the system of governing equations becomes stiff, and the standard explicit integrating methods produce instabilities that destroy the numerical solution. To deal with such a difficulty, we have extended the relativistic MHD code MR-GENESIS, to include a number of Implicit Explicit Runge-Kutta (IMEX-RK) numerical methods. To validate the i…

PhysicsTheoretical physicsCode (set theory)Theory of relativityIdeal (set theory)Space and Planetary ScienceNumerical analysisAstronomy and AstrophysicsMagnetohydrodynamicsComputational physicsAIP Conf. Proc., in press (2013)
researchProduct