Search results for "Magnetohydrodynamics"

showing 10 items of 206 documents

Jacobian-free approximate solvers for hyperbolic systems: Application to relativistic magnetohydrodynamics

2017

Abstract We present recent advances in PVM (Polynomial Viscosity Matrix) methods based on internal approximations to the absolute value function, and compare them with Chebyshev-based PVM solvers. These solvers only require a bound on the maximum wave speed, so no spectral decomposition is needed. Another important feature of the proposed methods is that they are suitable to be written in Jacobian-free form, in which only evaluations of the physical flux are used. This is particularly interesting when considering systems for which the Jacobians involve complex expressions, e.g., the relativistic magnetohydrodynamics (RMHD) equations. On the other hand, the proposed Jacobian-free solvers hav…

PolynomialWork (thermodynamics)MathematicsofComputing_NUMERICALANALYSISGeneral Physics and Astronomy01 natural sciencesMatrix decomposition010101 applied mathematicssymbols.namesakeMatrix (mathematics)Hardware and ArchitectureSimple (abstract algebra)Viscosity (programming)0103 physical sciencesJacobian matrix and determinantsymbolsCalculusApplied mathematics0101 mathematicsMagnetohydrodynamics010303 astronomy & astrophysicsMathematicsComputer Physics Communications
researchProduct

Liquid metal MHD experimental activities for LLCB TBM development

2013

Abstract In Indian Lead Lithium cooled Ceramic Breeder (LLCB) blanket concept, Lead–Lithium (Pb–Li) liquid metal is used to extract heat from its own bulk volume and also from the neighboring solid breeder zones. The moderate flow velocity of Pb–Li inside the module can be significantly modified due to MHD effects, which arise because of the presence of strong toroidal magnetic field. Recently, two MHD experiments have been jointly carried out at Institute of Physics, University of Latvia (IPUL) with hot Pb–Li (∼350 C) as the working fluid under a strong transverse magnetic field of up to ∼4.0 T. The uncoated test sections are made of SS316L material and consist of LLCB TBM relevant flow ge…

Pressure dropLiquid metalMaterials scienceMechanical EngineeringFluid mechanicsMechanicsBlanketBreeder (animal)Nuclear Energy and EngineeringFlow velocityWorking fluidGeneral Materials ScienceMagnetohydrodynamicsCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material

2014

Abstract In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4 T). The maximum Hartmann nu…

Pressure dropLiquid metalMaterials scienceMechanical EngineeringMechanicsBlanketHartmann numberMagnetic fieldNuclear Energy and EngineeringFerromagnetismPerpendicularGeneral Materials ScienceMagnetohydrodynamicsCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Numerical and experimental MHD studies of Lead-Lithium liquid metal flows in multichannel test-section at high magnetic fields

2018

Abstract Numerical simulation and experiments have been performed at high magnetic fields (1–3T) to study the MHD assisted molten Lead-Lithium (PbLi) flow in a model test-section which has typical features of multiple parallel channel flows as foreseen in various blanket module of ITER. The characteristics Hartmann number of the presented case study is up to 1557 which is relevant to typical fusion blanket conditions. Symbols B0, a, σ, μ in the definition of Hartmann number are strength of the applied magnetic field, characteristic length scale which is half the channel width parallel to the magnetic field, electrical conductivity and dynamic viscosity of PbLi respectively. Flow distributio…

Pressure dropMaterials scienceCharacteristic lengthMechanical EngineeringLaminar flowMechanicsHartmann number01 natural sciences010305 fluids & plasmasMagnetic fieldVolumetric flow ratePhysics::Fluid DynamicsNuclear Energy and EngineeringFlow (mathematics)0103 physical sciencesGeneral Materials ScienceMagnetohydrodynamics010306 general physicsCivil and Structural EngineeringFusion Engineering and Design
researchProduct

The Evolution of Disk Winds from a Combined Study of Optical and Infrared Forbidden Lines

2020

We analyze high-resolution (dv=<10km/s) optical and infrared spectra covering the [OI] 6300 angstrom and [NeII] 12.81 micron lines from a sample of 31 disks in different evolutionary stages. Following work at optical wavelengths, we use Gaussian profiles to fit the [NeII] lines and classify them into HVC (LVC) if the line centroid is more (less) blueshifted than 30 km/s with respect to the stellar radial velocity. Unlike for the [OI] where a HVC is often accompanied by a LVC, all 17 sources with a [NeII] detection have either a HVC or a LVC. [NeII] HVCs are preferentially detected toward high accretors (Macc > 10$^{-8}$ Msun/yr) while LVCs are found in sources with low Macc, low [OI] …

Protoplanetary disks1300010504 meteorology & atmospheric sciencesInfraredFOS: Physical sciencesAstrophysics01 natural sciencesLuminosityStellar accretion disksStellar jets0103 physical sciences1607010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)Earth and Planetary Astrophysics (astro-ph.EP)PhysicsSpectral index1579Astronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesRadial velocityFull width at half maximumWavelengthAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)MagnetohydrodynamicsAstrophysics - Earth and Planetary Astrophysics
researchProduct

Magnetohydrodynamic simulations of the ejection of a magnetic flux rope

2013

Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To …

Q ScienceMagnetohydrodynamics (MHD)coronal mass ejections [Sun]010504 meteorology & atmospheric sciencescorona [Sun]FluxAstrophysicsmagnetic fields01 natural sciencesmagnetohydrodynamics (MHD)0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsSun: coronal mass ejectionsSun: coronaQSunAstronomy and AstrophysicsCoronal loopCoronaMagnetic fluxNanoflares13. Climate actionSpace and Planetary ScienceMagnetic fieldsPhysics::Space PhysicsCoronal mass ejectionsCoronaMagnetohydrodynamicsRope
researchProduct

X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-beta values

2009

AIMS. We investigate the stability and dynamics of accretion shocks in CTTSs, considering the case of beta >= 1 in the post-shock region. In these cases the 1D approximation is not valid and a multi-dimensional MHD approach is necessary. METHODS. We model an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere, by performing 2D axisymmetric MHD simulations. The model takes into account the stellar magnetic field, the gravity, the radiative cooling, and the thermal conduction (including the effects of heat flux saturation). RESULTS. The dynamics and stability of the accretion shock strongly depends on the plasma beta. In the case of shocks with…

Radiative coolingAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesX-rays: starsAstrophysicsstars: pre-main sequenceInstabilitymagnetohydrodynamics (MHD)Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::Solar and Stellar AstrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion accretion disksStellar magnetic fieldStellar atmosphereAstronomy and Astrophysicsshock wavesAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceinstabilitiesMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Laboratory disruption of scaled astrophysical outflows by a misaligned magnetic field

2021

The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun’s outflows to extragalatic jets. Furthermore, they provide…

ScienceAstrophysics::High Energy Astrophysical PhenomenaNozzleoutflows magnetohydrodynamics(MHD) shockwaves astrophysical jetsGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCollimated lightSettore FIS/05 - Astronomia E AstrofisicaAmbient field0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetic pressure010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsLaboratory astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)MultidisciplinaryQLaser-produced plasmasGeneral ChemistryPhysics - Plasma PhysicsMagnetic fieldPlasma Physics (physics.plasm-ph)Astrophysics - Solar and Stellar AstrophysicsPhysics::Accelerator PhysicsOutflowHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Asymmetric Twisting of Coronal Loops

2023

The bright solar corona entirely consists of closed magnetic loops rooted in the photosphere. Photospheric motions are important drivers of magnetic stressing, which eventually leads to energy release into heat. These motions are chaotic and obviously different from one footpoint to the other, and in fact, there is strong evidence that loops are finely stranded. One may also expect strong transient variations along the field lines, but at a glance, coronal loops ever appear more or less uniformly bright from one footpoint to the other. We aim to understand how much coronal loops can preserve their own symmetry against asymmetric boundary motions that are expected to occur at loop footpoints…

Settore FIS/05 - Astronomia E AstrofisicaPhysics and Astronomy (miscellaneous)Chemistry (miscellaneous)activitysun: activityGeneral Mathematicssunplasmas: magnetohydrodynamics (MHD)Computer Science (miscellaneous)plasmascoronamagnetohydrodynamics (MHD)sun: coronaSymmetry
researchProduct

Magneto-elastic oscillations and the damping of crustal shear modes in magnetars

2010

In a realistic model of magneto-elastic oscillations in magnetars, we find that crustal shear oscillations, often invoked as an explanation of quasi-periodic oscillations (QPOs) seen after giant flares in soft gamma-ray repeaters (SGRs), are damped by resonant absorption on timescales of at most 0.2s, for a lower limit on the dipole magnetic field strength of 5 10 13 G. At higher magnetic field strengths (typical in magnetars) the damping timescale is even shorter, as anticipated by earlier toy-models. We have investigated a range of equations of state and masses and if magnetars are dominated by a dipole magnetic field, our findings exclude torsional shear oscillations of the crust from ex…

Shear (sheet metal)PhysicsDipoleSpace and Planetary ScienceAstrophysics::High Energy Astrophysical PhenomenaAstronomy and AstrophysicsAstrophysicsResonant absorptionMagneto elasticMagnetohydrodynamicsMagnetarLower limitMagnetic fieldMonthly Notices of the Royal Astronomical Society: Letters
researchProduct