Search results for "Many-Body"
showing 7 items of 87 documents
Study of linear response in Hubbard chains using Many-body Perturbation Theory
2010
In this work the basic formalism of non-equilibrium Green’s functions is presented and then applied to study a Ward identity in linear response theory, namely the frequency sum-rule. It can be proven that the frequency sum-rule is satisfied when the quantities involved are calculated using perturbation theory within a conserving approximation for the self-energy. To illustrate this equality along with other properties of the response function, a numerical application that solves the Kadanoff-Baym equations for systems of Hubbard chains was used. The results showed that the frequency sum-rule was satisfied to the same extent by all the conserving approximations used as by the exact diagonali…
Comparative analysis of muon-capture and 0νββ-decay matrix elements
2020
Average matrix elements of ordinary muon capture (OMC) to the intermediate nuclei of neutrinoless double beta (0νββ) decays of current experimental interest are computed and compared with the corresponding energy and multipole decompositions of 0νββ-decay nuclear matrix elements (NMEs). The present OMC computations are performed using the Morita-Fujii formalism by extending the original formalism beyond the leading order. The 0νββ NMEs include the appropriate short-range correlations, nuclear form factors, and higher-order nucleonic weak currents. The nuclear wave functions are obtained in extended no-core single-particle model spaces using the spherical version of the proton-neutron quasip…
Many-body Green's function theory for electron-phonon interactions: ground state properties of the Holstein dimer
2015
We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong whereas at smaller interactions only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron de…
Muon-capture strength functions in intermediate nuclei of 0νββ decays
2019
Capture rates of ordinary muon capture (OMC) to the intermediate nuclei of neutrinoless double beta (0νββ) decays of current experimental interest are computed. The corresponding OMC (capture-rate) strength functions have been analyzed in terms of multipole decompositions. The computed low-energy OMC-rate distribution to 76 As is compared with the available data of Zinatulina et al. [Phys. Rev. C 99, 024327 (2019)]. The present OMC computations are performed using the Morita-Fujii formalism by extending the original formalism beyond the leading order. The participant nuclear wave functions are obtained in extended no-core single-particle model spaces using the spherical version of proton-ne…
Correlating Schiff Moments in the Light Actinides with Octupole Moments
2018
Application of time-dependent many-body perturbation theory to excitation spectra of selected finite model systems
2016
In this thesis, an approximate method introduced to solve time-dependent many-body problems known as time-dependent many-body perturbation theory is studied. Many-body perturbation theory for interacting electrons and phonons is reviewed. In particular, the electron propagator G and an unconventional two-component phonon propagator, which satisfy coupled integral Dyson equations, are introduced. In practice, the associated integral kernels known as the electron Σ and phonon self-energies need to be approximated. The conserving approximations known as the Hartree (-Fock) and the first and second Born approximations, which respect the continuity equation between the electron density and curren…
Spectroscopy of short-lived radioactive molecules
2020
Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1–4. Radioactive molecules—in which one or more of the atoms possesses a radioactive nucleus—can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7–9 in molecu…