Search results for "Many-Body"

showing 7 items of 87 documents

Study of linear response in Hubbard chains using Many-body Perturbation Theory

2010

In this work the basic formalism of non-equilibrium Green’s functions is presented and then applied to study a Ward identity in linear response theory, namely the frequency sum-rule. It can be proven that the frequency sum-rule is satisfied when the quantities involved are calculated using perturbation theory within a conserving approximation for the self-energy. To illustrate this equality along with other properties of the response function, a numerical application that solves the Kadanoff-Baym equations for systems of Hubbard chains was used. The results showed that the frequency sum-rule was satisfied to the same extent by all the conserving approximations used as by the exact diagonali…

condensed mattermany-body theory
researchProduct

Comparative analysis of muon-capture and 0νββ-decay matrix elements

2020

Average matrix elements of ordinary muon capture (OMC) to the intermediate nuclei of neutrinoless double beta (0νββ) decays of current experimental interest are computed and compared with the corresponding energy and multipole decompositions of 0νββ-decay nuclear matrix elements (NMEs). The present OMC computations are performed using the Morita-Fujii formalism by extending the original formalism beyond the leading order. The 0νββ NMEs include the appropriate short-range correlations, nuclear form factors, and higher-order nucleonic weak currents. The nuclear wave functions are obtained in extended no-core single-particle model spaces using the spherical version of the proton-neutron quasip…

electron and muon capturenuclear many-body theoryNuclear Theorydouble beta decaycollective modelshiukkasfysiikkaNuclear Experimentydinfysiikkaneutrinoless double beta decay
researchProduct

Many-body Green's function theory for electron-phonon interactions: ground state properties of the Holstein dimer

2015

We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong whereas at smaller interactions only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron de…

ground state propertiesGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology53001 natural sciencesCondensed Matter - Strongly Correlated Electronssymbols.namesakeQuantum mechanics0103 physical sciencesSymmetry breakingPhysical and Theoretical ChemistryBorn approximationPerturbation theory010306 general physicsPhysicsBipolaronta114Strongly Correlated Electrons (cond-mat.str-el)many-body perturbation theoryHartree540021001 nanoscience & nanotechnologySymmetry (physics)3. Good healthGreen's functionelectron-phonon interactionsymbols0210 nano-technologyGround state
researchProduct

Muon-capture strength functions in intermediate nuclei of 0νββ decays

2019

Capture rates of ordinary muon capture (OMC) to the intermediate nuclei of neutrinoless double beta (0νββ) decays of current experimental interest are computed. The corresponding OMC (capture-rate) strength functions have been analyzed in terms of multipole decompositions. The computed low-energy OMC-rate distribution to 76 As is compared with the available data of Zinatulina et al. [Phys. Rev. C 99, 024327 (2019)]. The present OMC computations are performed using the Morita-Fujii formalism by extending the original formalism beyond the leading order. The participant nuclear wave functions are obtained in extended no-core single-particle model spaces using the spherical version of proton-ne…

nuclear many-body theoryhiukkasfysiikkaNuclear Experimentneutrinoless double beta decay
researchProduct

Correlating Schiff Moments in the Light Actinides with Octupole Moments

2018

nuclear many-body theoryta114nuclear density functional theoryydinfysiikkanuclear structure and decaysnuclear tests of fundamental interactionsPhysical Review Letters
researchProduct

Application of time-dependent many-body perturbation theory to excitation spectra of selected finite model systems

2016

In this thesis, an approximate method introduced to solve time-dependent many-body problems known as time-dependent many-body perturbation theory is studied. Many-body perturbation theory for interacting electrons and phonons is reviewed. In particular, the electron propagator G and an unconventional two-component phonon propagator, which satisfy coupled integral Dyson equations, are introduced. In practice, the associated integral kernels known as the electron Σ and phonon self-energies need to be approximated. The conserving approximations known as the Hartree (-Fock) and the first and second Born approximations, which respect the continuity equation between the electron density and curren…

numeeriset menetelmätmany-body problemsmany-body theoryspektroskopiaGreenin funktioGreen's functionmonen kappaleen teoriaelektronittime-dependent many-body perturbation theoryaikariippuva monihiukkashäiriöteoriaelectron-phonon interactionkiinteän olomuodon fysiikkakvanttimekaniikkaexcitation spectraapproksimointifononit
researchProduct

Spectroscopy of short-lived radioactive molecules

2020

Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1–4. Radioactive molecules—in which one or more of the atoms possesses a radioactive nucleus—can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7–9 in molecu…

spektroskopiacollinearnucl-ex01 natural sciences010305 fluids & plasmasRadiumchemistry.chemical_compoundIonizationExperimental nuclear physicsNuclear ExperimentPhysicsMultidisciplinaryLarge Hadron ColliderStable isotope rationew physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]hep-thmolekyylithep-phradiumelectron: electric momentNuclear Physics - Theoryradioactivitymany-body problemElectronic structure of atoms and moleculesAtomic physicsydinfysiikkaParticle Physics - Theoryexceptionalnucl-th[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]MonofluorideResearchInstitutes_Networks_Beacons/photon_science_institutechemistry.chemical_elementnucleus: structure functionElectronic structure[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Photon Science InstituteArticle0103 physical sciencesionizationMoleculeNuclear Physics - Experiment010306 general physicsSpectroscopyenhancementParticle Physics - Phenomenologystabilitysensitivitylaserchemistry[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Exotic atoms and moleculesnucleus: deformation
researchProduct