Search results for "Mappings"
showing 10 items of 69 documents
Singularities in L^p-quasidisks
2021
We study planar domains with exemplary boundary singularities of the form of cusps. A natural question is how much elastic energy is needed to flatten these cusps; that is, to remove singularities. We give, in a connection of quasidisks, a sharp integrability condition for the distortion function to answer this question. peerReviewed
Mappings of Lp-integrable distortion: regularity of the inverse
2016
Let be an open set in ℝn and suppose that is a Sobolev homeomorphism. We study the regularity of f–1 under the Lp-integrability assumption on the distortion function Kf. First, if is the unit ball and p > n – 1, then the optimal local modulus of continuity of f–1 is attained by a radially symmetric mapping. We show that this is not the case when p ⩽ n – 1 and n ⩾ 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for ∣Df–1∣ in terms of the Lp-integrability assumptions of Kf.
Mappings of finite distortion between metric measure spaces
2015
We establish the basic analytic properties of mappings of finite distortion between proper Ahlfors regular metric measure spaces that support a ( 1 , 1 ) (1,1) -Poincaré inequality. As applications, we prove that under certain integrability assumption for the distortion function, the branch set of a mapping of finite distortion between generalized n n -manifolds of type A A has zero Hausdorff n n -measure.
Isotropic p-harmonic systems in 2D Jacobian estimates and univalent solutions
2016
The core result of this paper is an inequality (rather tricky) for the Jacobian determinant of solutions of nonlinear elliptic systems in the plane. The model case is the isotropic (rotationally invariant) p-harmonic system ...
Coupled common fixed point theorems in partially ordered G-metric spaces for nonlinear contractions
2014
The aim of this paper is to prove coupled coincidence and coupled common fixed point theorems for a mixed $g$-monotone mapping satisfying nonlinear contractive conditions in the setting of partially ordered $G$-metric spaces. Present theorems are true generalizations of the recent results of Choudhury and Maity [Math. Comput. Modelling 54 (2011), 73-79], and Luong and Thuan [Math. Comput. Modelling 55 (2012) 1601-1609].
Generalized Hausdorff dimension distortion in Euclidean spaces under Sobolev mappings
2010
Abstract We investigate how the integrability of the derivatives of Orlicz–Sobolev mappings defined on open subsets of R n affect the sizes of the images of sets of Hausdorff dimension less than n. We measure the sizes of the image sets in terms of generalized Hausdorff measures.
On Branciari’s theorem for weakly compatible mappings
2010
AbstractIn a recent paper B. Samet and H. Yazidi [B. Samet, H. Yazidi, An extension of Banach fixed point theorem for mappings satisfying a contractive condition of integral type, Ital. J. Pure Appl. Math. (in press)] have obtained an interesting theorem for mappings satisfying a contractive condition of integral type. The aim of this note is to present a generalization of their main result.
Integration by parts on generalized manifolds and applications on quasiregular maps
2016
Lectures on quasiconformal and quasisymmetric mappings
2009
Approximation problems in linear and non-linear analysis
2023
En esta tesis estudiamos problemas relacionados con aplicaciones de varios tipos que alcanzan su norma u operadores que alcanzan su radio numérico. Tras un capítulo introductorio donde se comentan las notaciones, los principales conceptos, y un resumen histórico del estado del arte, hay 4 capítulos de contenido matemático donde se estudian diversos tipos de problemas. En el capítulo 2, se estudian clases de operadores entre espacios de Banach tales que cuando casi alcanzan su norma (respectivamente, su radio numérico) en un punto (respectivamente, un estado), necesariamente la alcanzan en un punto cercano (respectivamente, en un estado cercano). Se obtienen resultados positivos para dominio…