Search results for "Markov chain Monte Carlo"

showing 9 items of 79 documents

Statistical relationship between hardness of drinking water and cerebrovascular mortality in Valencia: a comparison of spatiotemporal models

2003

The statistical detection of environmental risk factors in public health studies is usually difficult due to the weakness of their effects and their confounding with other covariates. Small area geographical data bring the opportunity of observing health response in a wide variety of exposure values. Temporal sequences of these geographical datasets are crucial to gaining statistical power in detecting factors. The spatiotemporal models required to perform the statistical analysis have to allow for spatial and temporal correlations, which are more easily modelled via hierarchical structures of hidden random factors. These models have produced important research activity during the last deca…

Statistics and ProbabilityOperations researchComputer scienceEcological ModelingBayesian probabilityBayes factorMarkov chain Monte CarloDeviance (statistics)Information CriteriaStatistical powerDeviance information criterionsymbols.namesakeCovariateStatisticssymbolsEnvironmetrics
researchProduct

Bayesian hierarchical models in manufacturing bulk service queues

2006

In this paper, Queueing Theory and Bayesian statistical tools are used to analyze the congestion of various manufacturing bulk service queues with the same characteristics that are working independently of one another and in equilibrium. Hierarchical models are discussed in order to develop the whole inferential process for the parameters governing the system. Markov Chain Monte Carlo methods and numerical inversion of transforms are addressed to compute the posterior predictive distributions of the usual measures of performance in practice.

Statistics and ProbabilityQueueing theoryMathematical optimizationApplied MathematicsBayesian probabilityPosterior probabilityInversion (meteorology)Markov chain Monte CarloHierarchical database modelsymbols.namesakesymbolsEconometricsStatistics Probability and UncertaintyQueueMcmc algorithmMathematicsJournal of Statistical Planning and Inference
researchProduct

On the stability and ergodicity of adaptive scaling Metropolis algorithms

2011

The stability and ergodicity properties of two adaptive random walk Metropolis algorithms are considered. The both algorithms adjust the scaling of the proposal distribution continuously based on the observed acceptance probability. Unlike the previously proposed forms of the algorithms, the adapted scaling parameter is not constrained within a predefined compact interval. The first algorithm is based on scale adaptation only, while the second one incorporates also covariance adaptation. A strong law of large numbers is shown to hold assuming that the target density is smooth enough and has either compact support or super-exponentially decaying tails.

Statistics and ProbabilityStochastic approximationMathematics - Statistics TheoryStatistics Theory (math.ST)Law of large numbersMultiple-try Metropolis01 natural sciencesStability (probability)010104 statistics & probabilityModelling and Simulation65C40 60J27 93E15 93E35Adaptive Markov chain Monte CarloFOS: Mathematics0101 mathematicsScalingMetropolis algorithmMathematicsta112Applied Mathematics010102 general mathematicsRejection samplingErgodicityProbability (math.PR)ta111CovarianceRandom walkMetropolis–Hastings algorithmModeling and SimulationAlgorithmStabilityMathematics - ProbabilityStochastic Processes and their Applications
researchProduct

Contributed discussion on article by Pratola

2016

The author should be commended for his outstanding contribution to the literature on Bayesian regression tree models. The author introduces three innovative sampling approaches which allow for efficient traversal of the model space. In this response, we add a fourth alternative.

Statistics and Probabilitymodel selectionMarkov Chain Monte Carlo (MCMC)Bayesian regression treeComputer scienceBig dataBayesian regression tree (BRT) modelsComputingMilieux_LEGALASPECTSOFCOMPUTINGbirth–death processMachine learningcomputer.software_genreSequential Monte Carlo methods01 natural sciencespopulation Markov chain Monte Carlo010104 statistics & probabilitysymbols.namesakebig data0502 economics and businessBayesian Regression Trees (BART)0101 mathematics050205 econometrics Bayesian treed regressionMultiple Try Metropolis algorithmsINFERÊNCIA ESTATÍSTICAbusiness.industryApplied MathematicsModel selection05 social sciencesRejection samplingData scienceVariable-order Bayesian networkTree (data structure)Tree traversalMarkov chain Monte Carlocontinuous time Markov processsymbolsArtificial intelligencebusinessBayesian linear regressioncommunication-freecomputerGibbs samplingBayesian Analysis
researchProduct

A Dominance Variant Under the Multi-Unidimensional Pairwise-Preference Framework: Model Formulation and Markov Chain Monte Carlo Estimation.

2018

Forced-choice questionnaires have been proposed as a way to control some response biases associated with traditional questionnaire formats (e.g., Likert-type scales). Whereas classical scoring methods have issues of ipsativity, item response theory (IRT) methods have been claimed to accurately account for the latent trait structure of these instruments. In this article, the authors propose the multi-unidimensional pairwise preference two-parameter logistic (MUPP-2PL) model, a variant within Stark, Chernyshenko, and Drasgow’s MUPP framework for items that are assumed to fit a dominance model. They also introduce a Markov Chain Monte Carlo (MCMC) procedure for estimating the model’s paramete…

Structure (mathematical logic)Bayes estimator05 social sciences050401 social sciences methodsMarkov chain Monte CarloArticlesData setsymbols.namesake0504 sociology0502 economics and businessItem response theoryConvergence (routing)StatisticsEconometricssymbolsPairwise comparisonPsychology (miscellaneous)PsychologyPreference (economics)050203 business & managementSocial Sciences (miscellaneous)Applied psychological measurement
researchProduct

A probabilistic expert system for predicting the risk of Legionella in evaporative installations

2011

Research highlights? The bacterium Legionella usually lives in water sources such as cooling towers. ? We discuss a probabilistic expert system for predicting the risk of Legionella. ? The expert system has a master-slave architecture. ? The inference engine is implemented through Bayesian reasoning. ? Bayesian networks model and connect relationships for chemical and physical variables. Early detection in water evaporative installations is one of the keys to fighting against the bacterium Legionella, the main cause of Legionnaire's disease. This paper discusses the general structure, elements and operation of a probabilistic expert system capable of predicting the risk of Legionella in rea…

Structure (mathematical logic)Computer sciencebusiness.industryGeneral EngineeringProbabilistic logicBayesian networkMarkov chain Monte CarloBayesian inferenceMachine learningcomputer.software_genreExpert systemComputer Science Applicationssymbols.namesakeArtificial IntelligencesymbolsData miningArtificial intelligenceInference enginebusinesscomputerParametric statisticsExpert Systems with Applications
researchProduct

Cluster priors in the Bayesian modelling of fMRI data

2001

bildanalysmarked point processesMonte Carlo -menetelmätMarkov chain Monte Carloimage analysiskuva-analyysiMarkovin ketjutmagneettitutkimusaivotfunctional magnetic resonance imaginghuman brainBayesian modellingMarkovkedjor
researchProduct

Bayesian reanalysis of a quantitative trait locus accounting for multiple environments by scaling in broilers1

2006

A Bayesian method was developed to handle QTL analyses of multiple experimental data of outbred populations with heterogeneity of variance between sexes for all random effects. The method employed a scaled reduced animal model with random polygenic and QTL allelic effects. A parsimonious model specification was applied by choosing assumptions regarding the covariance structure to limit the number of parameters to estimate. Markov chain Monte Carlo algorithms were applied to obtain marginal posterior densities. Simulation demonstrated that joint analysis of multiple environments is more powerful than separate single trait analyses of each environment. Measurements on broiler BW obtained from…

education.field_of_studybusiness.industryBayesian probabilityPopulationfood and beveragesAccountingMarkov chain Monte CarloGeneral MedicineCovarianceBiologyQuantitative trait locusRandom effects modelsymbols.namesakeBayes' theoremStatisticsGeneticsTraitsymbolsAnimal Science and ZoologybusinesseducationFood ScienceJournal of Animal Science
researchProduct

Can the adaptive Metropolis algorithm collapse without the covariance lower bound?

2011

The Adaptive Metropolis (AM) algorithm is based on the symmetric random-walk Metropolis algorithm. The proposal distribution has the following time-dependent covariance matrix at step $n+1$ \[ S_n = Cov(X_1,...,X_n) + \epsilon I, \] that is, the sample covariance matrix of the history of the chain plus a (small) constant $\epsilon>0$ multiple of the identity matrix $I$. The lower bound on the eigenvalues of $S_n$ induced by the factor $\epsilon I$ is theoretically convenient, but practically cumbersome, as a good value for the parameter $\epsilon$ may not always be easy to choose. This article considers variants of the AM algorithm that do not explicitly bound the eigenvalues of $S_n$ away …

stabiiliusMetropolis-algoritmiAdaptive Markov chain Monte Carlostochastic approximationstokastinen approksimaatiostabilityadaptiivinen Markov chain Monte CarloMetropolis algorithm
researchProduct