Search results for "Markov"

showing 10 items of 628 documents

Hidden Markov random field model and Broyden–Fletcher–Goldfarb–Shanno algorithm for brain image segmentation

2018

International audience; Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. …

Dice coefficient criterionComputer scienceBrain image segmentation02 engineering and technologyMR-images[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Theoretical Computer Science03 medical and health sciences0302 clinical medicineArtificial Intelligence0202 electrical engineering electronic engineering information engineering[INFO]Computer Science [cs]SegmentationBrain magnetic resonance imagingHidden Markov modelRandom fieldbusiness.industryBroyden-Fletcher-Goldfarb-Shanno algorithmPattern recognitionImage segmentationhidden Markov random fieldMinimization3. Good healthHomogeneousBroyden–Fletcher–Goldfarb–Shanno algorithm020201 artificial intelligence & image processingAutomatic segmentationArtificial intelligenceHidden Markov random fieldbusiness030217 neurology & neurosurgerySoftwareJournal of Experimental & Theoretical Artificial Intelligence
researchProduct

Levy targeting and the principle of detailed balance

2011

We investigate confining mechanisms for Lévy flights under premises of the principle of detailed balance. In this case, the master equation of the jump-type process admits a transformation to the Lévy-Schrödinger semigroup dynamics akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation. This sets a correspondence between above two stochastic dynamical systems, within which we address a (stochastic) targeting problem for an arbitrary stability index μ ε (0,2) of symmetric Lévy drivers. Namely, given a probability density function, specify the semigroup potential, and thence the jump-type dynamics for which this PDF is actually a long-time asymptotic (target) …

Diffusion equationDynamical systems theoryMovementNormal DistributionFOS: Physical sciencesDiffusionOscillometryMaster equationFOS: MathematicsApplied mathematicsCondensed Matter - Statistical MechanicsMathematical PhysicsMathematicsStochastic ProcessesModels StatisticalStatistical Mechanics (cond-mat.stat-mech)SemigroupStochastic processPhysicsProbability (math.PR)Mathematical analysisCauchy distributionDetailed balanceMathematical Physics (math-ph)Markov ChainsTransformation (function)ThermodynamicsAlgorithmsMathematics - Probability
researchProduct

A note on renewal systems

1992

Abstract A renewal system is a symbolic dynamical system generated by free concatenations of a finite set of words. In this paper we prove that, given two systems which are both renewal and Markov systems, it is decidable whether they are topologically conjugate. The proof makes use of the methods and the techniques of formal language theory.

Discrete mathematicsAlgebraGeneral Computer ScienceFormal languageMarkov systemsDynamical system (definition)Topological conjugacyFinite setComputer Science::Formal Languages and Automata TheoryDecidabilityMathematicsTheoretical Computer ScienceComputer Science(all)Theoretical Computer Science
researchProduct

An integral representation for decomposable measures of measurable functions

1994

We start with a measurem on a measurable space (Ω,A), decomposable with respect to an Archimedeant-conorm ⊥ on a real interval [0,M], which generalizes an additive measure. Using the integral introduced by the second author, a Radon-Nikodym type theorem, needed in what follows, is given.

Discrete mathematicsIntegral representationMarkov kernelMeasurable functionApplied MathematicsGeneral MathematicsDiscrete Mathematics and CombinatoricsInterval (graph theory)Type (model theory)Space (mathematics)Measure (mathematics)MathematicsAequationes Mathematicae
researchProduct

The pianigiani-yorke measure for topological markov chains

1997

We prove the existence of a Pianigiani-Yorke measure for a Markovian factor of a topological Markov chain. This measure induces a Gibbs measure in the limit set. The proof uses the contraction properties of the Ruelle-Perron-Frobenius operator.

Discrete mathematicsMathematics::Dynamical SystemsMarkov chain mixing timeMarkov chainGeneral MathematicsMarkov processPartition function (mathematics)TopologyHarris chainNonlinear Sciences::Chaotic Dynamicssymbols.namesakeBalance equationsymbolsExamples of Markov chainsGibbs measureMathematicsIsrael Journal of Mathematics
researchProduct

On the structure of the ultradistributions of Beurling type

2008

Let O be a nonempty open set of the k-dimensional euclidean space Rk. In this paper, we give a structure theorem on the ultradistributions of Beurling type in O. Also, other structure results on certain ultradistributions are obtained, in terms of complex Borel measures in O.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsAlgebra and Number TheoryEuclidean spaceRiesz–Markov–Kakutani representation theoremApplied MathematicsOpen setStructure (category theory)Banach spaceType (model theory)Computational MathematicsLocally convex topological vector spaceGeometry and TopologyAnalysisStructured program theoremMathematicsRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas
researchProduct

Context Trees, Variable Length Markov Chains and Dynamical Sources

2012

Infinite random sequences of letters can be viewed as stochastic chains or as strings produced by a source, in the sense of information theory. The relationship between Variable Length Markov Chains (VLMC) and probabilistic dynamical sources is studied. We establish a probabilistic frame for context trees and VLMC and we prove that any VLMC is a dynamical source for which we explicitly build the mapping. On two examples, the "comb" and the "bamboo blossom", we find a necessary and sufficient condition for the existence and the uniqueness of a stationary probability measure for the VLMC. These two examples are detailed in order to provide the associated Dirichlet series as well as the genera…

Discrete mathematicsPure mathematicsStationary distributionMarkov chain010102 general mathematicsProbabilistic dynamical sourcesProbabilistic logicContext (language use)Information theoryVariable length Markov chains01 natural sciencesMeasure (mathematics)Occurrences of words[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilitysymbols.namesakesymbolsUniquenessDynamical systems of the intervalDirichlet series0101 mathematics[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Dirichlet seriesMathematics
researchProduct

Conjugate unstable manifolds and their underlying geometrized Markov partitions

2000

Abstract Conjugate unstable manifolds of saturated hyperbolic sets of Smale diffeomorphisms are characterized in terms of the combinatorics of their geometrized Markov partitions. As a consequence, the relationship between the local and the global point of view is also made explicit.

Discrete mathematicsSmale diffeomorphismsMathematics::Dynamical SystemsMarkov chainInvariant manifoldsGeometrized Markov partitionsPoint (geometry)Geometry and TopologyMathematics::Symplectic GeometryMathematics::Geometric TopologyConjugateMathematicsTopology and its Applications
researchProduct

QUANTITATIVE CONVERGENCE RATES FOR SUBGEOMETRIC MARKOV CHAINS

2015

We provide explicit expressions for the constants involved in the characterisation of ergodicity of subgeometric Markov chains. The constants are determined in terms of those appearing in the assumed drift and one-step minorisation conditions. The results are fundamental for the study of some algorithms where uniform bounds for these constants are needed for a family of Markov kernels. Our results accommodate also some classes of inhomogeneous chains.

Discrete mathematicsStatistics and ProbabilityMarkov chain mixing timeMarkov chainVariable-order Markov modelGeneral Mathematicsta111Markov chain010102 general mathematicsErgodicity01 natural sciencesInhomogeneous010104 statistics & probability60J05Polynomial ergodicitySubgeometric ergodicityConvergence (routing)60J22Examples of Markov chainsStatistical physics0101 mathematicsStatistics Probability and UncertaintyMathematics
researchProduct

Exponential inequalities and estimation of conditional probabilities

2006

This paper deals with the problems of typicality and conditional typicality of “empirical probabilities” for stochastic process and the estimation of potential functions for Gibbs measures and dynamical systems. The questions of typicality have been studied in [FKT88] for independent sequences, in [BRY98, Ris89] for Markov chains. In order to prove the consistency of estimators of transition probability for Markov chains of unknown order, results on typicality and conditional typicality for some (Ψ)-mixing process where obtained in [CsS, Csi02]. Unfortunately, lots of natural mixing process do not satisfy this Ψ -mixing condition (see [DP05]). We consider a class of mixing process inspired …

Discrete mathematicssymbols.namesakeChain rule (probability)Mixing (mathematics)Markov chainStatisticssymbolsLaw of total probabilityConditional probabilityAlmost surelyGibbs measureConditional varianceMathematics
researchProduct