Search results for "Markov"
showing 10 items of 628 documents
Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range
2014
A Bayesian solution is suggested for the modelling of spatial point patterns with inhomogeneous hard-core radius using Gaussian processes in the regularization. The key observation is that a straightforward use of the finite Gibbs hard-core process likelihood together with a log-Gaussian random field prior does not work without penalisation towards high local packing density. Instead, a nearest neighbour Gibbs process likelihood is used. This approach to hard-core inhomogeneity is an alternative to the transformation inhomogeneous hard-core modelling. The computations are based on recent Markovian approximation results for Gaussian fields. As an application, data on the nest locations of Sa…
Bayesian Smoothing in the Estimation of the Pair Potential Function of Gibbs Point Processes
1999
A flexible Bayesian method is suggested for the pair potential estimation with a high-dimensional parameter space. The method is based on a Bayesian smoothing technique, commonly applied in statistical image analysis. For the calculation of the posterior mode estimator a new Monte Carlo algorithm is developed. The method is illustrated through examples with both real and simulated data, and its extension into truly nonparametric pair potential estimation is discussed.
Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers
2018
We establish quantitative bounds for rates of convergence and asymptotic variances for iterated conditional sequential Monte Carlo (i-cSMC) Markov chains and associated particle Gibbs samplers. Our main findings are that the essential boundedness of potential functions associated with the i-cSMC algorithm provide necessary and sufficient conditions for the uniform ergodicity of the i-cSMC Markov chain, as well as quantitative bounds on its (uniformly geometric) rate of convergence. Furthermore, we show that the i-cSMC Markov chain cannot even be geometrically ergodic if this essential boundedness does not hold in many applications of interest. Our sufficiency and quantitative bounds rely on…
Some links between conditional and coregionalized multivariate Gaussian Markov random fields
2020
Abstract Multivariate disease mapping models are attracting considerable attention. Many modeling proposals have been made in this area, which could be grouped into three large sets: coregionalization, multivariate conditional and univariate conditional models. In this work we establish some links between these three groups of proposals. Specifically, we explore the equivalence between the two conditional approaches and show that an important class of coregionalization models can be seen as a large subclass of the conditional approaches. Additionally, we propose an extension to the current set of coregionalization models with some new unexplored proposals. This extension is able to reproduc…
Statistical relationship between hardness of drinking water and cerebrovascular mortality in Valencia: a comparison of spatiotemporal models
2003
The statistical detection of environmental risk factors in public health studies is usually difficult due to the weakness of their effects and their confounding with other covariates. Small area geographical data bring the opportunity of observing health response in a wide variety of exposure values. Temporal sequences of these geographical datasets are crucial to gaining statistical power in detecting factors. The spatiotemporal models required to perform the statistical analysis have to allow for spatial and temporal correlations, which are more easily modelled via hierarchical structures of hidden random factors. These models have produced important research activity during the last deca…
The Concept of Duality and Applications to Markov Processes Arising in Neutral Population Genetics Models
1999
One possible and widely used definition of the duality of Markov processes employs functions H relating one process to another in a certain way. For given processes X and Y the space U of all such functions H, called the duality space of X and Y, is studied in this paper. The algebraic structure of U is closely related to the eigenvalues and eigenvectors of the transition matrices of X and Y. Often as for example in physics (interacting particle systems) and in biology (population genetics models) dual processes arise naturally by looking forwards and backwards in time. In particular, time-reversible Markov processes are self-dual. In this paper, results on the duality space are presented f…
Decoherence in a fermion environment: Non-Markovianity and Orthogonality Catastrophe
2013
We analyze the non-Markovian character of the dynamics of an open two-level atom interacting with a gas of ultra-cold fermions. In particular, we discuss the connection between the phenomena of orthogonality catastrophe and Fermi edge singularity occurring in such a kind of environment and the memory-keeping effects which are displayed in the time evolution of the open system.
Non-Markovian dynamics of interacting qubit pair coupled to two independent bosonic baths
2009
The dynamics of two interacting spins coupled to separate bosonic baths is studied. An analytical solution in Born approximation for arbitrary spectral density functions of the bosonic environments is found. It is shown that in the non-Markovian cases concurrence "lives" longer or reaches greater values.
Reading a Qubit Quantum State with a Quantum Meter: Time Unfolding of Quantum Darwinism and Quantum Information Flux
2019
Quantum non-Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non-Markovian and non-darwinistic behaviours.
Variable Length Memory Chains: Characterization of stationary probability measures
2021
Variable Length Memory Chains (VLMC), which are generalizations of finite order Markov chains, turn out to be an essential tool to modelize random sequences in many domains, as well as an interesting object in contemporary probability theory. The question of the existence of stationary probability measures leads us to introduce a key combinatorial structure for words produced by a VLMC: the Longest Internal Suffix. This notion allows us to state a necessary and sufficient condition for a general VLMC to admit a unique invariant probability measure. This condition turns out to get a much simpler form for a subclass of VLMC: the stable VLMC. This natural subclass, unlike the general case, enj…