Search results for "Mass Transfer"

showing 10 items of 171 documents

Enhanced [4+2] cycloadditions by solvophobic effects and gravity-induced mixing in core-shell droplets

2017

A new way to perform reactions in core—shell double emulsions is reported herein. The phase boundaries of the threephase droplet flow were used to pressurize the reactants in the shell liquid, enhancing the reaction rate of a cycloaddition greatly in comparison to known methods. As key parameters, solvophobic effects and precise control over the droplet sizes were used to exploit a reaction with a negative volume of activation. The internal pressure of the reaction solution was regulated purely by the thickness of the shell liquid without adding additional reagents. Additionally, the reaction performed better when the core droplet was used to stir the shell droplet, considerably improving t…

Fluid Flow and Transfer Processes010405 organic chemistryChemistryOrganic ChemistryMixing (process engineering)Shell (structure)double emulsions010402 general chemistrymicroreactor01 natural sciences0104 chemical sciencesPhysics::Fluid DynamicsReaction rateChemistry (miscellaneous)Chemical physicsPhase (matter)Mass transferReagentPhysics::Atomic and Molecular Clustersactive mixingOrganic chemistryMicroreactorSolvophobichydrophobic effectcycloaddition
researchProduct

Influence of bundle porosity on shell-side hydrodynamics and mass transfer in regular fiber arrays: A computational study

2023

CFD predictions of the effects of a fiber bundle porosity on shell-side hydrodynamics and mass transfer under conditions of steady laminar flow were obtained. Fluid was assumed to flow around regular hexag-onal or square arrays of cylindrical fibers of different pitch to diameter ratios, yielding bundle porosities ranging from the theoretical minimum up to similar to 1. A large number of axial, transverse and mixed flow combinations were simulated by letting the axial and transverse flow Reynolds numbers and the trans-verse flow attack angle vary. Both fully developed and developing conditions (entrance effects) were con-sidered. The continuity and momentum equations, along with a transport…

Fluid Flow and Transfer ProcessesComputational Fluid Dynamics Hollow fiber membrane Entrance effects Darcy permeability Mass transfer coefficient HemodialysisSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMass transfer coefficientHemodialysisSettore ING-IND/25 - Impianti ChimiciMechanical EngineeringEntrance effectsComputational Fluid DynamicsCondensed Matter PhysicsDarcy permeabilitySettore ING-IND/19 - Impianti NucleariHollow fiber membraneInternational Journal of Heat and Mass Transfer
researchProduct

Evaluation of vapor mass transfer in various membrane distillation configurations: an experimental study

2011

Vapor mass transfer phenomena in four different membrane distillation (MD) configurations were examined through a self-built laboratory scale experimen- tal apparatus: Air Gap MD, Sweeping Gas MD, Vacuum Sweeping Gas MD and Vacuum MD. Vapor fluxes were measured and compared with those predicted by various models, showing that MD performance under usual processing conditions is severely controlled by the permeate side resistance to mass transfer.

Fluid Flow and Transfer ProcessesMaterials scienceMass transfermass transferThermodynamicsmembrane distillationPermeationLaboratory scalehydrophobic membranesCondensed Matter PhysicsAir gap (plumbing)Membrane distillation
researchProduct

Effect of laser radiation upon heat and mass transfer in two-component elastic semitransparent layer

2004

Abstract In present paper the effect of the correlation between spectral radiative characteristics of different lasers and absorptive characteristics of laser irradiated two-component elastic semitransparent material upon coupled thermal, diffusive and elastic processes in the layer is examined. Irradiated material is supposed to consist of elastic matrix and gaseous admixture. Investigations are carried out within the model applied early to the study of mentioned coupled processes in the layer subjected to thermal infrared radiation. Calculations were carried out for four different infrared lasers. Peculiarities of heat and admixture mass transfer caused by laser irradiation are establishe…

Fluid Flow and Transfer ProcessesMaterials sciencePhysics::Instrumentation and DetectorsInfraredbusiness.industryMechanical EngineeringRadiationCondensed Matter PhysicsLaserMolecular physicslaw.inventionOpticslawMass transferThermalRadiative transferIrradiationbusinessLayer (electronics)International Journal of Heat and Mass Transfer
researchProduct

Heat exchangers and linear image processing theory

1989

Abstract This paper shows that the transient analysis of some heat exchangers can be derived easily with the linear equations of image processing theory. Partial differential equations of the cross-flow, parallelflow and rotary heat exchangers are considered together with the corresponding discrete models for linear image processing. Some numerical examples show that the nature of the heat and/or mass transfer problems is similar to those of image processing.

Fluid Flow and Transfer ProcessesPhysicsPartial differential equationMechanical EngineeringMass transferHeat exchangerThermodynamicsImage processingMechanicsCondensed Matter PhysicsTransient analysisLinear equationInternational Journal of Heat and Mass Transfer
researchProduct

CFD prediction of shell-side flow and mass transfer in regular fiber arrays

2021

Numerical simulations were conducted for fully developed, steady-state flow with mass transfer in fiber bundles arranged in regular lattices. The porosity was 0.5 and the Schmidt number 500. Several combinations of axial flow, transverse flow and flow attack angles in the cross-section plane were considered. The axial and transverse Reynolds numbers Rez , ReT were made to vary from 10(^−4) to 10(^2). Concentration boundary conditions, and the definition of an average Sherwood number, were addressed. Results for the hydraulic permeability were compared with the literature. Both hexagonal and square lattices were found to be hydraulically almost isotropic up to transverse flow Reynolds number…

Fluid Flow and Transfer ProcessesPhysicsSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMechanical EngineeringComputational fluid dynamics Viscous flow Shell-side mass transfer Rod array Cylinder arraySchmidt numberIsotropyReynolds number02 engineering and technologyMechanics021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSherwood number010305 fluids & plasmasPhysics::Fluid DynamicsTransverse planesymbols.namesakeAxial compressorFlow (mathematics)Mass transfer0103 physical sciencessymbols0210 nano-technologySettore ING-IND/19 - Impianti Nucleari
researchProduct

Mass transfer in ducts with transpiring walls

2019

Abstract The problem of mass transfer in ducts with transpiring walls is analysed: the concepts of “solvent” and “solute” fluxes are introduced, all possible sign combinations for these fluxes are considered, and relevant examples from membrane processes such as electrodialysis, reverse osmosis and filtration are identified. Besides the dimensionless numbers commonly defined in studying flow and mass transfer problems, new dimensionless quantities appropriate to transpiration problems are introduced, and their limiting values, associated with “drying”, “desalting” and “saturation” conditions, are identified. A simple model predicting the Sherwood number Sh under all possible flux sign combi…

Fluid Flow and Transfer ProcessesSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryMechanical EngineeringSchmidt numberFlow (psychology)02 engineering and technologyMechanicsComputational fluid dynamics021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSherwood number010305 fluids & plasmasMass transfer Transpiring wall Sherwood number Computational fluid dynamics Parallel flowMass transfer0103 physical sciencesDiffusion (business)0210 nano-technologybusinessSaturation (chemistry)Settore ING-IND/19 - Impianti NucleariDimensionless quantityMathematicsInternational Journal of Heat and Mass Transfer
researchProduct

Heat and mass flows coupled with stress in a continuous medium

1996

Abstract The present paper is concerned with the formulation of the generalization of theories describing heat and mass flows in a continuous medium. The considerations are based on the non-equilibrium thermodynamics. As a result the fundamental equations for the mass and heat fluxes and for the thermodynamic and mechanical fields, are obtained and the corresponding set of differential equations is formulated. Certain differences are pointed out between the general theories presented here and the thermodiffusion theory and the theory of mixtures. A thermodynamic variational principle is constructed. All the investigations concern only flows with a single temperature field. Copyright © 1996 …

Fluid Flow and Transfer ProcessesStress (mechanics)Mixture theoryPhysicsHeat mass transferTheoretical physicsField (physics)Differential equationVariational principleGeneralizationMechanical EngineeringMechanicsCondensed Matter PhysicsInternational Journal of Heat and Mass Transfer
researchProduct

Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and feasibility

2017

Abstract The performance, fouling and feasibility of a polydimethylsiloxane hollow fibre membrane module for in situ methane degasification from the effluent of an Expanded Granular Sludge Bed anaerobic reactor has been investigated. Experiments at different operational conditions were carried out (liquid flow, sweep gas flow and vacuum pressure) with maximum removal efficiency (77%) at lowest flow-rate (0.4 L h−1), highest vacuum gauge pressure (−800 mbar) and liquid flowing in lumen side. Mass transport analysis denoted a considerably higher methane transfer than that predicted (attributed to liquid oversaturation). An enhancement factor for liquid phase has been proposed to correlate the…

FoulingGasos d'efecte hivernacleMembrane foulingEnergy balanceEnvironmental engineeringFiltration and Separation02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnology01 natural sciencesMethaneAnalytical Chemistrychemistry.chemical_compoundMembranechemistryChemical engineeringDegasificationMass transfer0210 nano-technologyEffluent0105 earth and related environmental sciences
researchProduct

Predicting breakthrough of vanadium in fixed-bed absorbent columns with complex groundwater chemistries: A multi-component granular ferric hydroxide−…

2020

Granular ferric hydroxide (GFH) is often used for fixed bed adsorbent (FBA) columns in groundwater purification units around the world to remove arsenate contaminations. Groundwater can contain also other toxic (e.g., antimonite and vanadate) and non-toxic oxo-anions (phosphate and silicic acid) that are known to affect FBA lifetimes. Therefore, understanding the breakthrough of toxic compounds intended for removal by FBA is essential to their design, and is important to predict accurately breakthrough curves (BTCs) for FBAs in waterworks to plan future operating costs. Rapid small-scale column tests (RSCCT) and pilot-scale FBA were used to simulate vanadate BTCs for complex groundwater che…

Full PaperChemistryEcological ModelingInorganic chemistryArsenateVanadiumchemistry.chemical_elementPollutionlcsh:TD1-1066HSDMchemistry.chemical_compoundRSCCTAdsorptionCD-MUSICMass transferVanadateFBAFreundlich equationVanadateAdsorptionSilicic acidlcsh:Environmental technology. Sanitary engineeringWaste Management and DisposalGroundwaterWater Science and TechnologyWater Research X
researchProduct