Search results for "Material"

showing 10 items of 32550 documents

Laser Ultrasonics Inspection for Defect Evaluation on Train Wheel

2019

Abstract Passengers’ safety and in-service life of wheelset axles play an important role in railway vehicles. For this reason, periodic inspections are necessary. Among non-destructive techniques, ultrasonic ones are widely applied in this field. The main disadvantage of conventional ultrasonic techniques is that the overall inspection of wheels requires the train to be put out-of-service and disassembly each part, which is time-consuming and expensive. In this paper, a non-conventional non-contact laser ultrasonic inspection for train wheels is proposed. The proposed method uses a laser interferometer to receive the ultrasonic wave without contact. The receiving system allows choosing the …

010302 applied physicsLaser ultrasonicsUltrasonic applications Ultrasonic waves Laser ultrasonicsComputer scienceMechanical EngineeringAcousticsUltrasonic testingNon-destructive testing Non-contact techniques Laser ultrasonic Train wheel inspectionCondensed Matter PhysicsLaser01 natural scienceslaw.inventionAxleInterferometrySettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineComplex geometrylaw0103 physical sciencesGeneral Materials ScienceUltrasonic sensor010301 acousticsReliability (statistics)
researchProduct

New fine structures resolved at the ELNES Ti-L2,3 edge spectra of anatase and rutile: comparison between experiment and calculation.

2010

Abstract Anatase and rutile Ti- L 2,3 edge spectra were measured in electron energy loss spectroscopy (EELS) using a transmission electron microscope (TEM) coupled to a CEOS Cs-probe corrector, an omega-type monochromator and an in-column omega-type energy filter fully corrected for 2nd order aberrations. Thanks to the high energy resolution, high electron probe current and high stability achieved under this instrumental configuration, new fine structures, never reported before, were resolved at the L 3 band of both rutile and anatase. The data suggest that new peaks also exist in the L 2 e g band. The experimental spectra are compared with multichannel multiple scattering (MMS) calculation…

010302 applied physicsLigand field theoryAnataseMaterials scienceScatteringElectron energy loss spectroscopyAnalytical chemistry02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsAtomic and Molecular Physics and OpticsSpectral lineElectronic Optical and Magnetic Materialslaw.inventionG bandlaw[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciences0210 nano-technologyElectronic band structureInstrumentationComputingMilieux_MISCELLANEOUSMonochromator
researchProduct

Exploring the transport properties of equatorially low coordinated erbium single ion magnets

2019

Single-molecule spin transport represents the lower limit of miniaturization of spintronic devices. These experiments, although extremely challenging, are key to understand the magneto-electronic properties of a molecule in a junction. In this context, theoretical screening of new magnetic molecules provides invaluable knowledge before carrying out sophisticated experiments. Herein, we investigate the transport properties of three equatorially low-coordinated erbium single ion magnets with C3v symmetry: Er[N(SiMe3⁠)2⁠]3⁠ (1), Er(btmsm)3⁠ (2) and Er(dbpc)3⁠ (3), where btmsm=bis(trimethylsilyl)methyl and dbpc=2,6-di-tert-butyl-p-cresolate. Our ligand field analysis, based on previous spectros…

010302 applied physicsLigand field theoryMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicschemistry.chemical_elementFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldErbiumchemistryChemical physicsMagnet0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)MiniaturizationMolecule0210 nano-technologyGround state
researchProduct

Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN/MnN exchange-coupled bilayers

2016

010302 applied physicsMagnetizationNuclear magnetic resonanceMaterials scienceCondensed matter physics0103 physical sciences02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technologyAnisotropyEpitaxy01 natural sciencesPhysical Review B
researchProduct

Key factors towards a high-quality additive manufacturing process with ABS material

2019

Abstract Additive Manufacturing technologies have gained a lot of popularity during the past years. The current challenge being the transition of this manufacturing technology from prototype oriented towards mass production. In order to achieve this, fabrication times and mechanical parameters must be improved. This paper aims to identify which are the parameters that have the highest influence on parts obtained with fused deposition modeling (FDM) technology from ABS material. In addition, this study identifies which are the most accurate methods to test the mechanical properties of FDM parts while still respecting ASTM standard for testing the tensile properties of plastics. It was found …

010302 applied physicsManufacturing technologyMaterials scienceFabricationFused deposition modelingAstm standardManufacturing processbusiness.industrymedia_common.quotation_subject02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionKey factorslaw0103 physical sciencesUltimate tensile strengthQuality (business)0210 nano-technologyProcess engineeringbusinessmedia_commonMaterials Today: Proceedings
researchProduct

Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications

2017

This paper reports the current potentials of cold gas dynamic spraying (CGDS). CGDS has been significantly developed to produce several functional solutions categorized as follows: deposits with a single powder nature, composites-based deposits, nanotechnological deposits and hybrid coating/substrate assemblies. CGDS process has improved in proficiency and is still gaining attention from scientists and industry. Covering a wide range of materials, both standard and advanced, this additive manufacturing process offers substantial applications for surface functionalization, structural or dimensional restoration, bulk production providing specific material properties, and art/decoration. Progr…

010302 applied physicsMaterials processingManufacturing processbusiness.industryMechanical EngineeringNanotechnology02 engineering and technologySubstrate (printing)Advanced materialsengineering.material021001 nanoscience & nanotechnology01 natural sciencesCoatingMechanics of Materials0103 physical sciencesengineeringlcsh:TA401-492General Materials Sciencelcsh:Materials of engineering and construction. Mechanics of materials0210 nano-technologyThermal sprayingbusinessPolyvinylsMaterials & Design
researchProduct

Mass recovery of carbonated fabrics of glass fibres after isothermal heating

2019

Acknowledgement: Authors acknowledge financial support from Latvian National Program IMIS2

010302 applied physicsMaterials science0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]02 engineering and technologyComposite material021001 nanoscience & nanotechnology0210 nano-technology01 natural sciencesIsothermal processIOP Conference Series: Materials Science and Engineering
researchProduct

Metallurgical Strategies for the Joining of Titanium Alloys with Steels

2018

010302 applied physicsMaterials science0103 physical sciencesMetallurgyTitanium alloyGeneral Materials Science02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technologyCondensed Matter PhysicsMicrostructure01 natural sciencesAdvanced Engineering Materials
researchProduct

Physical properties and microstructure characteristics of (1–x)BaTiO3–xCaTiO3 systems

2018

The study investigates the microstructure, thermal and mechanical properties of (1–x)BaTiO3–xCaTiO3 ((1–x)BT–xCT)) (x = 0.01, 0.04, 0.08) samples. The BT–CT system to be tested was formed as a soli...

010302 applied physicsMaterials science0103 physical sciencesThermalGeneral Materials Science02 engineering and technologyDielectricComposite material021001 nanoscience & nanotechnology0210 nano-technologyMicrostructure01 natural sciencesInstrumentationPhase Transitions
researchProduct

Spark Plasma Sintering à partir de poudres mécaniquement activées : compréhension des transitions de phase au cours d'un frittage réactif

2007

International audience; À " basse température " (entre 400 et 600 ◦C), l'oxydation de MoSi2 entraîne sa désintégration en poudre (phénomène de " peste "). De récents travaux ont montré que l'utilisation de MoSi2 dense et nano-organisé permettrait de ralentir ce phénomène de " peste ". Le défi de produire des matériaux denses et nano-organisés peut être relevé par le frittage " flash " réactif sous champ électrique à partir des poudres mécaniquement activées (Mechanically-Activated Spark Plasma Sintering, MASPS). Le contrôle de la composition et de la microstructure du composé intermétallique MoSi2 nécessite de déterminer les paramètres du frittage SPS (température, rampe de montée en tempér…

010302 applied physicsMaterials science0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Physical chemistrySpark plasma sinteringGeneral Materials ScienceNon oxide ceramics02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technology01 natural sciencesMatériaux & Techniques
researchProduct