Search results for "Mathematical Physic"

showing 10 items of 2690 documents

The average element order and the number of conjugacy classes of finite groups

2021

Abstract Let o ( G ) be the average order of the elements of G, where G is a finite group. We show that there is no polynomial lower bound for o ( G ) in terms of o ( N ) , where N ⊴ G , even when G is a prime-power order group and N is abelian. This gives a negative answer to a question of A. Jaikin-Zapirain.

20D15 20C15 20E45Finite groupPolynomialAlgebra and Number TheoryGroup (mathematics)010102 general mathematicsGroup Theory (math.GR)01 natural sciencesUpper and lower boundsElement OrderCombinatoricsConjugacy class0103 physical sciencesFOS: MathematicsOrder (group theory)010307 mathematical physics0101 mathematicsAbelian groupMathematics - Group TheoryG110 Pure MathematicsMathematics
researchProduct

Automorphisms of 2–dimensional right-angled Artin groups

2007

We study the outer automorphism group of a right-angled Artin group AA in the case where the defining graph A is connected and triangle-free. We give an algebraic description of Out.AA/ in terms of maximal join subgraphs in A and prove that the Tits’ alternative holds for Out.AA/. We construct an analogue of outer space for Out.AA/ and prove that it is finite dimensional, contractible, and has a proper action of Out.AA/. We show that Out.AA/ has finite virtual cohomological dimension, give upper and lower bounds on this dimension and construct a spine for outer space realizing the most general upper bound. 20F36; 20F65, 20F28

20F36outer spaceCohomological dimensionComputer Science::Digital LibrariesQuantitative Biology::Other01 natural sciencesContractible spaceUpper and lower boundsCombinatorics0103 physical sciences20F650101 mathematicsAlgebraic numberMathematics20F28Quantitative Biology::Biomolecules010102 general mathematicsAstrophysics::Instrumentation and Methods for AstrophysicsOuter automorphism groupAutomorphismGraphArtin groupright-angled Artin groups010307 mathematical physicsGeometry and Topologyouter automorphismsGeometry & Topology
researchProduct

Isometric embeddings of snowflakes into finite-dimensional Banach spaces

2016

We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X$ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.

30L05 46B85 54C25 54E40 28A80Pure mathematicsmetric spacesGeneral MathematicsMathematicsofComputing_GENERALBanach space01 natural sciencesfunctional analysisCardinalityMathematics - Metric GeometryDimension (vector space)0103 physical sciencesFOS: MathematicsMathematics (all)Mathematics::Metric Geometry0101 mathematicsSnowflakeNormed vector spaceMathematicsConcave functionApplied Mathematicsta111010102 general mathematicsnormiavaruudetMetric Geometry (math.MG)normed spacesmetriset avaruudetMetric spacefractalsfraktaalit010307 mathematical physicsfunktionaalianalyysiMathematics (all); Applied MathematicsVector spaceProceedings of the American Mathematical Society
researchProduct

Partially implicit Runge-Kutta methods for wave-like equations

2012

In this work we present a new class of Runge-Kutta (RK) methods for solving systems of hyperbolic equations with a particular structure, generalization of a wave-equation. The new methods are {\it partially implicit} in the sense that a proper subset of the equations of the system contains some terms which are treated implicitly. These methods can be viewed as a particular case of the implicit-explicit (IMEX) RK methods for systems of equations with wave-like structure. For these systems, the optimal methods with the new structure are easier to derive than the IMEX ones, specially when aiming at higher-order (up to fourth-order in this work). The methods are constructed considering the clas…

35L60 35L05 83C35FOS: Physical sciencesMathematical Physics (math-ph)General Relativity and Quantum Cosmology (gr-qc)Mathematical PhysicsGeneral Relativity and Quantum Cosmology
researchProduct

Non-symmetrized Hyperspherical Harmonics Method for Non-equal Mass Three-Body Systems

2018

The non-symmetrized hyperspherical harmonics method for a three-body system, composed by two particles having equal masses, but different from the mass of the third particle, is reviewed and applied to the $^3$H, $^3$He nuclei and $^3_{\Lambda}$H hyper-nucleus, seen respectively as $nnp$, $ppn$ and $NN\Lambda$ three-body systems. The convergence of the method is first tested in order to estimate its accuracy. Then, the difference of binding energy between $^3$H and $^3$He due to the difference of the proton and the neutron masses is studied using several central spin-independent and spin-dependent potentials. Finally, the $^3_{\Lambda}$H hypernucleus binding energy is calculated using diffe…

3HeProtonMaterials Science (miscellaneous)hypertritonBinding energyBiophysicsGeneral Physics and AstronomyLambda01 natural sciencesthree-body systemstriton0103 physical sciencesNeutronhypersperical harmonics methodPhysical and Theoretical Chemistry010306 general physicsMathematical PhysicsMathematical physicsPhysics010308 nuclear & particles physicslight nucleiOrder (ring theory)Hypernucleuslcsh:QC1-999Harmonicslcsh:PhysicsHypertritonFrontiers in Physics
researchProduct

On the Almost Everywhere Convergence of Multiple Fourier-Haar Series

2019

The paper deals with the question of convergence of multiple Fourier-Haar series with partial sums taken over homothetic copies of a given convex bounded set $$W\subset\mathbb{R}_+^n$$ containing the intersection of some neighborhood of the origin with $$\mathbb{R}_+^n$$ . It is proved that for this type sets W with symmetric structure it is guaranteed almost everywhere convergence of Fourier-Haar series of any function from the class L(ln+L)n−1.

40A05Control and OptimizationBounded set (topological vector space)Type (model theory)01 natural sciencesmultiple Fourier-Haar seriesHomothetic transformationCombinatoricssymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciences42C10Almost everywhere0101 mathematicsMathematicsSeries (mathematics)Applied Mathematics010102 general mathematicsRegular polygonAlmost everywhere convergenceFunction (mathematics)Fourier transformsymbols010307 mathematical physicslacunar serieAnalysisJournal of Contemporary Mathematical Analysis (Armenian Academy of Sciences)
researchProduct

Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function

2009

A new method is presented for Fourier decomposition of the Helmholtz Green Function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Helmholtz Green function are split into their half advanced+half retarded and half advanced-half retarded components. Closed form solutions are given for these components in terms of a Horn function and a Kampe de Feriet function, respectively. The systems of partial differential equations associated with these two-dimensional hypergeometric functions are used to construct a fourth-order ordinary differential equation which both components satisfy. A s…

42B05Helmholtz equationSeries (mathematics)Applied MathematicsGeneral MathematicsMathematical analysis34B27General Physics and AstronomyFOS: Physical sciencesMathematical Physics (math-ph)Legendre function35J05; 34B27; 42B05symbols.namesake35J05Helmholtz free energysymbolsHypergeometric functionFourier seriesMathematical PhysicsHorn functionBessel functionMathematics
researchProduct

Frame-related Sequences in Chains and Scales of Hilbert Spaces

2022

Frames for Hilbert spaces are interesting for mathematicians but also important for applications in, e.g., signal analysis and physics. In both mathematics and physics, it is natural to consider a full scale of spaces, and not only a single one. In this paper, we study how certain frame-related properties of a certain sequence in one of the spaces, such as completeness or the property of being a (semi-) frame, propagate to the other ones in a scale of Hilbert spaces. We link that to the properties of the respective frame-related operators, such as analysis or synthesis. We start with a detailed survey of the theory of Hilbert chains. Using a canonical isomorphism, the properties of frame se…

42C15 46C99 47A70Algebra and Number TheoryHilbert chainsLogicFunctional Analysis (math.FA)Mathematics - Functional AnalysisSettore MAT/05 - Analisi Matematicaframes; scales of Hilbert spaces; Hilbert chains; Bessel sequences; semi-framesframesFOS: Mathematicsscales of Hilbert spacessemi-framesGeometry and TopologyBessel sequencesMathematical PhysicsAnalysis
researchProduct

Structure of locally convex quasi C * -algebras

2008

There are examples of C*-algebras A that accept a locally convex *-topology τ coarser than the given one, such that Ã[τ] (the completion of A with respect to τ) is a GB*-algebra. The multiplication of A[τ] may be or not be jointly continuous. In the second case, Ã[*] may fail being a locally convex *-algebra, but it is a partial *-algebra. In both cases the structure and the representation theory of Ã[τ] are investigated. If Ã+ τ denotes the τ-closure of the positive cone A+ of the given C*-algebra A, then the property Ā+ τ ∩ (-Ā+ τ) = {0} is decisive for the existence of certain faithful *-representations of the corresponding *-algebra Ã[τ]

46L05quasi *-algebrasGeneral Mathematicslocally convex quasi $C^*$-algebrasRegular polygonStructure (category theory)FOS: Physical sciencesContext (language use)Mathematical Physics (math-ph)quasi-positivityCombinatoricsunbounded *-representationsMultiplicationquasi ∗-algebras quasi-positivity locally convex quasi C ∗ -algebras unbounded ∗-representations.46K10Algebra over a field46K70Settore MAT/07 - Fisica MatematicaMathematical PhysicsTopology (chemistry)47L60MathematicsJournal of the Mathematical Society of Japan
researchProduct

Solutions of the LPD equation and multi-parametric rogue waves

2022

Quasi-rational solutions to the Lakshmanan Porsezian Daniel equation are presented. We construct explicit expressions of these solutions for the first orders depending on real parameters. We study the patterns of these configurations in the (x, t) plane in function of the different parameters. We observe in the case of order 2, three rogue waves which move according to the two parameters. In the case of order 3, six rogue waves are observed with specific configurations moving according to the four parameters.

47.35.Fg47.10A-47.54.Bdquasi-rational solutions PACS numbers : 33Q5537K10[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Lakshmanan Porsezian Daniel equation
researchProduct