Search results for "Mathematical Physic"
showing 10 items of 2690 documents
Derivations of quasi *-algebras
2004
The spatiality of derivations of quasi*-algebras is investigated by means of representation theory. Moreover, in view of physical applications, the spatiality of the limit of a family of spatial derivations is considered.
Kontsevich formality and cohomologies for graphs
2004
A formality on a manifold M is a quasi isomorphism between the space of polyvector fields (Tpoly(M)) and the space of multidifferential operators (Dpoly(M)). In the case M=R d , such a mapping was explicitly built by Kontsevich, using graphs drawn in configuration spaces. Looking for such a construction step by step, we have to consider several cohomologies (Hochschild, Chevalley, and Harrison and Chevalley) for mappings defined on Tpoly. Restricting ourselves to the case of mappings defined with graphs, we determine the corresponding coboundary operators directly on the spaces of graphs. The last cohomology vanishes.
Star-products and phase space realizations of quantum groups
1992
It is shown for a family of *-products (i.e. different ordering rules) that, under a strong invariance condition, the functions of the quadratic preferred observables (which generate the Cartan subalgebra in phase space realization of Lie algebras) take only the linear or exponential form. An exception occurs for the case of a symmetric ordering *-product where trigonometric functions and two special polynomials can also be included. As an example, the ‘quantized algebra’ of the oscillator Lie algebra is argued.
Generalised Deformations, Koszul Resolutions, Moyal Products
1998
We generalise Gerstenhaber's theory of deformations, by dropping the assumption that the deformation parameter should commute with the elements of the original algebra. We give the associated cohomology and construct a Koszul resolution for the polynomial algebra [Formula: see text] in the "homogeneous" case. We then develop examples in the case of [Formula: see text] and find some Moyal-like products of a new type. Finally, we show that, for any field K, matrix algebras with coefficients in K and finite degree extensions of K are rigid, as in the commutative case.
Star representations of E(2)
1990
We give a complete and explicit realization of the unitary irreducible representations of the universal covering group G of E(2), the Euclidean group in two dimensions, by deformation of the algebra of functions on the dual g* of the Lie algebra of G. We define an adapted Fourier transform for G which gives a natural description of the harmonic analysis of G.
Volume growth and parabolicity
2001
Analytic vectors, anomalies and star representations
1989
It is hinted that anomalies are not really anomalous since (at least in characteristic examples) they can be related to a lack of common analytic vectors for the Hamiltonian and the observables. We reanalyze the notions of analytic vectors and of local representations of Lie algebras in this light, and show how the notion of preferred observables introduced in the deformation (star product) approach to quantization may help give an anomaly-free formulation to physical problems. Finally, some remarks are made concerning the applicability of these considerations to field theory, especially in two dimensions.
The planar two-body problem for spheroids and disks
2021
We outline a new method suggested by Conway (2016) for solving the two-body problem for solid bodies of spheroidal or ellipsoidal shape. The method is based on integrating the gravitational potential of one body over the surface of the other body. When the gravitational potential can be analytically expressed (as for spheroids or ellipsoids), the gravitational force and mutual gravitational potential can be formulated as a surface integral instead of a volume integral, and solved numerically. If the two bodies are infinitely thin disks, the surface integral has an analytical solution. The method is exact as the force and mutual potential appear in closed-form expressions, and does not invol…
X-ray measurements of charge transfer reactions involving cold, very highly charged ions
1999
The magnetic trapping mode of the Livermore high-energy Electron Beam Ion Trap is exploited to study charge transfer reactions between cold (few eV/amu) highly charged ions and gases. By selectively puffing neutral gases and monitoring the x-ray emission, state-selective measurements of the charge transfer reaction channels are possible. The observed K-shell x-ray spectra show prominent emission from high-n levels decaying to the n = 1 ground level, which is enabled by electron capture into states with low orbital angular momentum. A comparison with modeling calculations, therefore, allows a determination of the range of principal and angular momentum quantum numbers involved in the reactio…
Exact non-Markovian dynamics of Gaussian quantum channels: Finite-time and asymptotic regimes
2018
We investigate the Markovian and non-Markovian dynamics of Gaussian quantum channels, exploiting a recently introduced necessary and sufficient criterion and the ensuing measure of non-Markovianity based on the violation of the divisibility property of the dynamical map. We compare the paradigmatic instances of Quantum Brownian motion (QBM) and Pure Damping (PD) channels, and for the former we find that the exact dynamical evolution is always non-Markovian in the finite-time as well as in the asymptotic regimes, for any nonvanishing value of the non-Markovianity parameter. If one resorts to the rotating wave approximated (RWA) form of the QBM, that neglects the anomalous diffusion contribut…