Search results for "Mathematical Physics"

showing 10 items of 2687 documents

On the classification of CAT(0) structures for the 4-string braid group

2005

This paper is concerned with the class of so-called CAT(0) groups, namely, those groups that admit a geometric (i.e., properly discontinuous, co-compact, and isometric) action on some CAT(0) space. More precisely, we are interested in knowing to what extent it is feasible to classify the geometric CAT(0) actions of a given group (up to, say, equivariant homothety of the space). A notable example of such a classification is the flat torus theorem, which implies that the minimal geometric CAT(0) actions of the free abelian group Z (n ≥ 1) are precisely the free actions by translations of Euclidean space E. Typically, however, a given group will have uncountably many nonequivalent actions, mak…

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General Mathematics20F56Braid group20F36Center (group theory)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Combinatoricssymbols.namesakeEuler characteristic[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciences0101 mathematicsComputingMilieux_MISCELLANEOUSMathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Euclidean spaceGroup (mathematics)010102 general mathematicsFree abelian groupAlgebraFree groupsymbolsEquivariant map010307 mathematical physics
researchProduct

Finite index subgroups of mapping class groups

2011

Let g ≥ 3 and n ≥ 0, and let Mg,n be the mapping class group of a surface of genus g with n boundary components. We prove that Mg,n contains a unique subgroup of index 2g−1(2g − 1) up to conjugation, a unique subgroup of index 2g−1(2g + 1) up to conjugation, and the other proper subgroups ofMg,n are of index greater than 2g−1(2g+1). In particular, the minimum index for a proper subgroup of Mg,n is 2g−1(2g − 1). AMS Subject Classification. Primary: 57M99. Secondary: 20G40, 20E28. 0 Introduction and statement of results The interaction between mapping class groups and finite groups has long been a topic of interest. The famous Hurwitz bound of 1893 showed that the mapping class group of a clo…

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT][ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General MathematicsGroup Theory (math.GR)01 natural sciencesUpper and lower bounds[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics - Geometric Topologysymbols.namesake57M99SubgroupGenus (mathematics)[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: MathematicsOrder (group theory)0101 mathematicsQuotientMathematicsRiemann surface010102 general mathematicsGeometric Topology (math.GT)Mapping class groupOrientation (vector space)symbols010307 mathematical physicsMathematics - Group Theory
researchProduct

Riemannian metric of the averaged energy minimization problem in orbital transfer with low thrust

2007

Abstract This article deals with the optimal transfer of a satellite between Keplerian orbits using low propulsion and is based on preliminary results of Epenoy et al. (1997) where the optimal trajectories of the energy minimization problem are approximated using averaging techniques. The averaged Hamiltonian system is explicitly computed. It is related to a Riemannian problem whose distance is an approximation of the value function. The extremal curves are analyzed, proving that the system remains integrable in the coplanar case. It is also checked that the metric associated with coplanar transfers towards a circular orbit is flat. Smoothness of small Riemannian spheres ensures global opti…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyIntegrable system02 engineering and technologyEnergy minimization01 natural sciencesHamiltonian systemsymbols.namesake020901 industrial engineering & automationBellman equationCircular orbit0101 mathematicsMathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]symbolsSPHERESAstrophysics::Earth and Planetary Astrophysics[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Orbital maneuverHamiltonian (quantum mechanics)Analysis
researchProduct

Conjugate and cut loci of a two-sphere of revolution with application to optimal control

2008

Abstract The objective of this article is to present a sharp result to determine when the cut locus for a class of metrics on a two-sphere of revolution is reduced to a single branch. This work is motivated by optimal control problems in space and quantum dynamics and gives global optimal results in orbital transfer and for Lindblad equations in quantum control.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyWork (thermodynamics)Class (set theory)Quantum dynamicsCut locus02 engineering and technologySpace (mathematics)01 natural sciencesspace and quantum mechanicsoptimal control020901 industrial engineering & automationconjugate and cut loci0101 mathematics2-spheres of revolutionMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]53C20; 53C21; 49K15; 70Q05Optimal controlMetric (mathematics)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Orbital maneuverAnalysis
researchProduct

Minimum fuel control of the planar circular restricted three-body problem

2012

The circular restricted three-body problem is considered to model the dynamics of an artificial body submitted to the attraction of two planets. Minimization of the fuel consumption of the spacecraft during the transfer, e.g. from the Earth to the Moon, is considered. In the light of the controllability results of Caillau and Daoud (SIAM J Control Optim, 2012), existence for this optimal control problem is discussed under simplifying assumptions. Thanks to Pontryagin maximum principle, the properties of fuel minimizing controls is detailed, revealing a bang-bang structure which is typical of L1-minimization problems. Because of the resulting non-smoothness of the Hamiltonian two-point bound…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Lagrangian point02 engineering and technology01 natural sciences0203 mechanical engineeringControl theory0103 physical sciencesApplied mathematicsBoundary value problemCircular orbit010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSMathematical PhysicsMathematics020301 aerospace & aeronauticsApplied MathematicsConjugate points[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Astronomy and AstrophysicsOptimal controlThree-body problemControllabilityComputational MathematicsSpace and Planetary ScienceModeling and Simulation[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Hamiltonian (control theory)Celestial Mechanics and Dynamical Astronomy
researchProduct

Topological Hopf algebras, quantum groups and deformation quantization

2003

After a presentation of the context and a brief reminder of deformation quantization, we indicate how the introduction of natural topological vector space topologies on Hopf algebras associated with Poisson Lie groups, Lie bialgebras and their doubles explains their dualities and provides a comprehensive framework. Relations with deformation quantization and applications to the deformation quantization of symmetric spaces are described

[ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA]quantum groups[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]FOS: Physical sciences[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG]topological vector spacesMathematical Physics (math-ph)[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]deformation quantizationMathematics - Symplectic GeometryHopf algebras54C40 14E20 (primary) 46E25 20C20 (secondary)[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Mathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: Mathematics[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]Quantum Algebra (math.QA)Symplectic Geometry (math.SG)Mathematical Physics
researchProduct

$PT$-symmetry and Schrödinger operators. The double well case

2016

International audience; We study a class of $PT$-symmetric semiclassical Schrodinger operators, which are perturbations of a selfadjoint one. Here, we treat the case where the unperturbed operator has a double-well potential. In the simple well case, two of the authors have proved in [6] that, when the potential is analytic, the eigenvalues stay real for a perturbation of size $O(1)$. We show here, in the double-well case, that the eigenvalues stay real only for exponentially small perturbations, then bifurcate into the complex domain when the perturbation increases and we get precise asymptotic expansions. The proof uses complex WKB-analysis, leading to a fairly explicit quantization condi…

[ MATH.MATH-SP ] Mathematics [math]/Spectral Theory [math.SP]MSC: 35P20 81Q12 81Q20 35Q40Complex WKB analysis[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]EigenvaluesMathematics::Spectral TheoryPT-symmetryMathematics - Spectral Theory[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]35P20 35Q40 81Q12 81Q20Quantization conditonSchrödinger operatorsMathematical Physics[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]
researchProduct

Fractal Weyl law for open quantum chaotic maps

2014

We study the semiclassical quantization of Poincar\'e maps arising in scattering problems with fractal hyperbolic trapped sets. The main application is the proof of a fractal Weyl upper bound for the number of resonances/scattering poles in small domains near the real axis. This result encompasses the case of several convex (hard) obstacles satisfying a no-eclipse condition.

[ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesSemiclassical physicsDynamical Systems (math.DS)35B34 37D20 81Q50 81U05Upper and lower boundsMSC: 35B34 37D20 81Q50 81U05Fractal Weyl lawQuantization (physics)Mathematics - Analysis of PDEs[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (miscellaneous)Fractal[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Dynamical SystemsQuantumMathematical physicsMathematicsScattering[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences - Chaotic DynamicsWeyl lawResonancesQuantum chaotic scattering[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Chaotic Dynamics (nlin.CD)Statistics Probability and UncertaintyOpen quantum mapComplex planeAnalysis of PDEs (math.AP)Annals of Mathematics
researchProduct

Using Global Radiation Model to Simulate Surface Temperature Impact on Snow Melt - Loven Glacier – Spitsberg

2009

International audience

[ SDE.MCG ] Environmental Sciences/Global Changes[ INFO.INFO-MO ] Computer Science [cs]/Modeling and Simulation[SDE.MCG] Environmental Sciences/Global Changes[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][SDE.MCG]Environmental Sciences/Global Changes[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][SDU.STU] Sciences of the Universe [physics]/Earth Sciences[SDU.STU]Sciences of the Universe [physics]/Earth Sciences[ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph][INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationComputingMilieux_MISCELLANEOUS
researchProduct

On the projective geometry of entanglement and contextuality

2019

[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Invariant theory[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]Information quantiqueAlgebraic geometry[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]Théorie des invariants[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph][MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Géométrie discrète et combinatoireGéométrie algébriqueQuantum Information[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Finite geometry[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]
researchProduct