Search results for "Mathematical optimization"
showing 10 items of 1300 documents
A heuristic approach for optimal operation of grid connected source-battery-load systems
2016
In the paper an optimal management procedure for a system composed of a renewable energy source, storage batteries and a load, permanently connected to a distribution network, is presented. The issue follows two objectives: a) maximum economic benefit for the system, and b) minimum energy exchange with the network. The operation cost of storage facilities, as well as the technical and economic constraints on power exchanges between the system and the network and the technical constraints about charging and discharging cycles of the batteries are considered. The effectiveness of the management procedure is numerically tested and the results are presented.
Solving two‐armed Bernoulli bandit problems using a Bayesian learning automaton
2010
PurposeThe two‐armed Bernoulli bandit (TABB) problem is a classical optimization problem where an agent sequentially pulls one of two arms attached to a gambling machine, with each pull resulting either in a reward or a penalty. The reward probabilities of each arm are unknown, and thus one must balance between exploiting existing knowledge about the arms, and obtaining new information. The purpose of this paper is to report research into a completely new family of solution schemes for the TABB problem: the Bayesian learning automaton (BLA) family.Design/methodology/approachAlthough computationally intractable in many cases, Bayesian methods provide a standard for optimal decision making. B…
Robust Transmit Beamforming for Underlay D2D Communications on Multiple Channels
2020
Underlay device-to-device (D2D) communications lead to improvement in spectral efficiency by simultaneously allowing direct communication between the users and the existing cellular transmission. However, most works in resource allocation for D2D communication have considered single antenna transmission and with a focus on perfect channel state information (CSI). This work formulates a robust transmit beamforming design problem for maximizing the aggregate rate of all D2D pairs and cellular users (CUs). Assuming complex Gaussian distributed CSI error, our formulation guarantees probabilistically a signal to interference plus noise ratio (SINR) above a specified threshold. In addition, we al…
Reliable Underlay D2D Communications over Multiple Transmit Antenna Framework
2020
Robust beamforming is an efficient technique to guarantee the desired receiver performance in the presence of erroneous channel state information (CSI). However, the application of robust beamforming in underlay device-to-device (D2D) communication still requires further investigation. In this paper, we investigate resource allocation problem for underlay D2D communications by considering multiple antennas at the base station (BS) and at the transmitters of D2D pairs. The proposed design problem aims at maximizing the aggregate rate of all D2D pairs and cellular users (CUs) in downlink spectrum. In addition, our objective is augmented to achieve a fair allocation of resources across the D2D…
Relay selection in FDD amplify-and-forward cooperative networks
2017
In this paper, the problems of relay selection and distributed beamforming are investigated for bi-directional dual-hop amplify-and-forward frequency-division duplex cooperative wireless networks. When using individual per-relay maximum transmission power constraint, it has been proven that the relay selection and beamforming optimization problem becomes NP hard and requires exhaustive search to find the optimal solution. Therefore, we propose a computationally affordable sub-optimal multiple relay selection and beamforming optimization scheme based on the l1 norm squared relaxation. The proposed scheme performs the selection for the two transmission directions, simultaneously, while aiming…
Trial Methods for Nonlinear Bernoulli Problem
1997
In this article we consider a free boundary problem which is related to formation of waves on a fluid surface (for example the ship waves). We study the possibility to construct ‘trial’ methods where one solves a sequence of standard flow problems formulated in different geometries that converge to the final free boundary. Furthermore, we use the shape optimization techniques to analyse the convergence of the fixed point iteration near a fixed point. For stream function case we conclude that the fast convergence can be obtained by using non-standard boundary conditions and we present numerical results to confirm the analysis.
PINCoC: a Co-Clustering based Method to Analyze Protein-Protein Interaction Networks
2007
Anovel technique to search for functionalmodules in a protein-protein interaction network is presented. The network is represented by the adjacency matrix associated with the undirected graph modelling it. The algorithm introduces the concept of quality of a sub-matrix of the adjacency matrix, and applies a greedy search technique for finding local optimal solutions made of dense submatrices containing the maximum number of ones. An initial random solution, constituted by a single protein, is evolved to search for a locally optimal solution by adding/removing connected proteins that best contribute to improve the quality function. Experimental evaluations carried out on Saccaromyces Cerevis…
A new compact formulation for the discrete p-dispersion problem
2017
Abstract This paper addresses the discrete p -dispersion problem (PDP) which is about selecting p facilities from a given set of candidates in such a way that the minimum distance between selected facilities is maximized. We propose a new compact formulation for this problem. In addition, we discuss two simple enhancements of the new formulation: Simple bounds on the optimal distance can be exploited to reduce the size and to increase the tightness of the model at a relatively low cost of additional computation time. Moreover, the new formulation can be further strengthened by adding valid inequalities. We present a computational study carried out over a set of large-scale test instances i…
Optimal standalone data center renewable power supply using an offline optimization approach
2022
Abstract Because of the increasing energy consumption of data centers and their C O 2 emissions, the ANR DATAZERO2 project aims to design autonomous data centers running solely on local renewable energy coupled with storage devices to overcome the intermittency issue. In order to optimize the use of renewable energy and storage devices, a MILP solver is usually in charge of assigning the power to be supplied to the data center. However, in order to reduce the computation time and make the approach scalable, it would be more appropriate to use a polynomial time algorithm. This paper aims at showing and proving that it is possible to provide an optimal power profile via a deterministic algori…
Blind deconvolution using TV regularization and Bregman iteration
2005
In this paper we formulate a new time dependent model for blind deconvolution based on a constrained variational model that uses the sum of the total variation norms of the signal and the kernel as a regularizing functional. We incorporate mass conservation and the nonnegativity of the kernel and the signal as additional constraints. We apply the idea of Bregman iterative regularization, first used for image restoration by Osher and colleagues [S.J. Osher, M. Burger, D. Goldfarb, J.J. Xu, and W. Yin, An iterated regularization method for total variation based on image restoration, UCLA CAM Report, 04-13, (2004)]. to recover finer scales. We also present an analytical study of the model disc…