Search results for "Mathematical optimization"
showing 10 items of 1300 documents
Optimal control of discrete-time interval type-2 fuzzy-model-based systems with D-stability constraint and control saturation
2016
This paper investigates the optimal control problem for discrete-time interval type-2 (IT2) fuzzy systems with pole constraints. An IT2 fuzzy controller is characterized by two predefined functions, and the membership functions and the premise rules of the IT2 fuzzy controller can be chosen freely. The pole assignment is considered, which is constrained in a presented disk region. Based on Lyapunov stability theory, sufficient conditions of asymptotic stability with an H ∞ performance are obtained for the discrete-time IT2 fuzzy model based (FMB) system. Based on the criterion, the desired IT2 state-feedback controller is designed to guarantee that the closed-loop system is asymptotically s…
Modeling and control of uncertain nonlinear systems
2018
A survey of the methodologies associated with the modeling and control of uncertain nonlinear systems has been given due importance in this paper. The basic criteria that highlights the work is relied on the various patterns of techniques incorporated for the solutions of fuzzy equations that corresponds to fuzzy controllability subject. The solutions which are generated by these equations are considered to be the controllers. Currently, numerical techniques have come out as superior techniques in order to solve these types of problems. The implementation of neural networks technique is contributed in the complex way of dealing the appropriate coefficients and solutions of the fuzzy systems.
Bio-inspired evolutionary dynamics on complex networks under uncertain cross-inhibitory signals
2019
Given a large population of agents, each agent has three possiblechoices between option 1 or 2 or no option. The two options are equally favorable and the population has to reach consensus on one of the two options quickly and in a distributed way. The more popular an option is, the more likely it is to be chosen by uncommitted agents. Agents committed to one option can be attracted by those committed to the other option through a cross-inhibitory signal. This model originates in the context of honeybee swarms, and we generalize it to duopolistic competition and opinion dynamics. The contributions of this work include (i) the formulation of a model to explain the behavioral traits of the ho…
A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
2017
Evolutionary algorithms are widely used for solving multiobjective optimization problems but are often criticized because of a large number of function evaluations needed. Approximations, especially function approximations, also referred to as surrogates or metamodels are commonly used in the literature to reduce the computation time. This paper presents a survey of 45 different recent algorithms proposed in the literature between 2008 and 2016 to handle computationally expensive multiobjective optimization problems. Several algorithms are discussed based on what kind of an approximation such as problem, function or fitness approximation they use. Most emphasis is given to function approxim…
A Methodology for Modeling and Optimizing Social Systems
2020
[EN] A system methodology for modeling and optimizing social systems is presented. It allows constructing dynamical models formulated stochastically, i.e., their results are given by confidence intervals. The models provide optimal intervention ways to reach the stated objectives. Two optimization methods are used: (1) to test strategies and scenarios and (2) to optimize with a genetic algorithm. The application case presented is a small nonformal education Spanish business. First, the model is validated in the 2008-2012 period, and subsequently, the optimal way to obtain a maximum profit in the 2013-2025 period is obtained using the two methods.
Metaheuristic procedures for the lexicographic bottleneck assembly line balancing problem
2015
The goal of this work is to develop an improved procedure for the solution of the lexicographic bottleneck variant of the assembly line balancing problem (LB-ALBP). The objective of the LB-ALBP is to minimize the workload of the most heavily loaded workstation, followed by the workload of the second most heavily loaded workstation and so on. This problem-recently introduced to the literature (Pastor, 2011)-has practical relevance to manufacturing facilities. We design, implement and fine-tune GRASP, tabu search (TS) and scatter search (SS) heuristics for the LB-ALBP and show that our procedures are able to obtain solutions of a quality that outperforms previous approaches. We rely on both s…
Opinion Dynamics and Stubbornness via Multi-Population Mean-Field Games
2016
This paper studies opinion dynamics for a set of heterogeneous populations of individuals pursuing two conflicting goals: to seek consensus and to be coherent with their initial opinions. The multi-population game under investigation is characterized by (i) rational agents who behave strategically, (ii) heterogeneous populations, and (iii) opinions evolving in response to local interactions. The main contribution of this paper is to encompass all of these aspects under the unified framework of mean-field game theory. We show that, assuming initial Gaussian density functions and affine control policies, the Fokker---Planck---Kolmogorov equation preserves Gaussianity over time. This fact is t…
Game Theoretic Decentralized Feedback Controls in Markov Jump Processes
2017
This paper studies a decentralized routing problem over a network, using the paradigm of mean-field games with large number of players. Building on a state-space extension technique, we turn the problem into an optimal control one for each single player. The main contribution is an explicit expression of the optimal decentralized control which guarantees the convergence both to local and to global equilibrium points. Furthermore, we study the stability of the system also in the presence of a delay which we model using an hysteresis operator. As a result of the hysteresis, we prove existence of multiple equilibrium points and analyze convergence conditions. The stability of the system is ill…
A decomposition approach to dual shuttle automated storage and retrieval systems
2016
[EN] Automated Storage and Retrieval Systems (AS/RS) have become vital in today¿s distribution and production environments, however it remains necessary to equip them with more efficient operational control policies. Motivated by real situations encountered by companies employing AS/RS, the present paper studies a miniload AS/RS system, with a dual shuttle crane in which a set of storage and retrieval requests must be scheduled such that the prioritized waiting time is minimized. Dual shuttle cranes have received minimal academic attention and thus continue to pose new problems that must be solved. The miniload AS/RS problem is addressed by decomposing it into a location assignment and sequ…
Interrogating witnesses for geometric constraint solving
2012
International audience; Classically, geometric constraint solvers use graph-based methods to decompose systems of geometric constraints. These methods have intrinsic limitations, which the witness method overcomes; a witness is a solution of a variant of the system. This paper details the computation of a basis of the vector space of free infinitesimal motions of a typical witness, and explains how to use this basis to interrogate the witness for dependence detection. The paper shows that the witness method detects all kinds of dependences: structural dependences already detectable by graph-based methods, but also non-structural dependences, due to known or unknown geometric theorems, which…