Search results for "Mathematical software"

showing 10 items of 60 documents

Magnetic fields in heavy ion collisions: flow and charge transport

2020

At the earliest times after a heavy-ion collision, the magnetic field created by the spectator nucleons will generate an extremely strong, albeit rapidly decreasing in time, magnetic field. The impact of this magnetic field may have detectable consequences, and is believed to drive anomalous transport effects like the Chiral Magnetic Effect (CME). We detail an exploratory study on the effects of a dynamical magnetic field on the hydrodynamic medium created in the collisions of two ultrarelativistic heavy-ions, using the framework of numerical ideal MagnetoHydroDynamics (MHD) with the ECHO-QGP code. In this study, we consider a magnetic field captured in a conducting medium, where the conduc…

Computer Science::Machine LearningParticle physicsPhysics and Astronomy (miscellaneous)Nuclear Theoryheavy ion collisionsFOS: Physical scienceslcsh:Astrophysicsmagnetic fieldshiukkasfysiikkamagneettikentätComputer Science::Digital Libraries01 natural sciencesElectric charge530Nuclear Theory (nucl-th)Statistics::Machine LearningHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:QB460-466ddc:530lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentEngineering (miscellaneous)Nuclear ExperimentPhysicsCharge conservation010308 nuclear & particles physicsElliptic flowCharge (physics)FermionMagnetic fieldDipoleHigh Energy Physics - PhenomenologyQuantum electrodynamicsComputer Science::Mathematical Softwarelcsh:QC770-798MagnetohydrodynamicsThe European Physical Journal C
researchProduct

Thermodynamics of the Classical Planar Ferromagnet Close to the Zero-Temperature Critical Point: A Many-Body Approach

2012

We explore the low-temperature thermodynamic properties and crossovers of ad-dimensional classical planar Heisenberg ferromagnet in a longitudinal magnetic field close to its field-induced zero-temperature critical point by employing the two-time Green’s function formalism in classical statistical mechanics. By means of a classical Callen-like method for the magnetization and the Tyablikov-like decoupling procedure, we obtain, for anyd, a low-temperature critical scenario which is quite similar to the one found for the quantum counterpart. Remarkably, ford>2the discrimination between the two cases is found to be related to the different values of the shift exponent which governs the beha…

Computer Science::Machine LearningPhysicsArticle SubjectCondensed matter physicsThermodynamicsStatistical mechanicsCondensed Matter PhysicsComputer Science::Digital Librarieslcsh:QC1-999Statistics::Machine LearningReduced propertiesCritical point (thermodynamics)Critical lineComputer Science::Mathematical SoftwareExponentCritical exponentQuantumlcsh:PhysicsPhase diagramAdvances in Condensed Matter Physics
researchProduct

(Approximate) Low-Mode Averaging with a new Multigrid Eigensolver

2015

We present a multigrid based eigensolver for computing low-modes of the Hermitian Wilson Dirac operator. For the non-Hermitian case multigrid methods have already replaced conventional Krylov subspace solvers in many lattice QCD computations. Since the $\gamma_5$-preserving aggregation based interpolation used in our multigrid method is valid for both, the Hermitian and the non-Hermitian case, inversions of very ill-conditioned shifted systems with the Hermitian operator become feasible. This enables the use of multigrid within shift-and-invert type eigensolvers. We show numerical results from our MPI-C implementation of a Rayleigh quotient iteration with multigrid. For state-of-the-art lat…

Computer scienceHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesRayleigh quotient iterationKrylov subspaceDirac operatorComputer Science::Numerical AnalysisHermitian matrixsymbols.namesakeHigh Energy Physics - LatticeMultigrid methodComputer Science::Mathematical SoftwaresymbolsApplied mathematicsSelf-adjoint operatorEigenvalues and eigenvectorsInterpolationProceedings of The 33rd International Symposium on Lattice Field Theory — PoS(LATTICE 2015)
researchProduct

MultivariateApart: Generalized partial fractions

2021

We present a package to perform partial fraction decompositions of multivariate rational functions. The algorithm allows to systematically avoid spurious denominator factors and is capable of producing unique results also when being applied to terms of a sum separately. The package is designed to work in Mathematica, but also provides interfaces to the Form and Singular computer algebra systems. THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOVE

ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONComputer Science::Mathematical SoftwareInterdisciplinary sciencesOther
researchProduct

Computer code from Sex roles and the evolution of parental care specialization.

2019

Computer code for the mathematical model in Mathematica

ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONMathematicsofComputing_NUMERICALANALYSISMathematicsofComputing_GENERALComputer Science::Mathematical SoftwareComputer Science::Symbolic Computation16. Peace & justice
researchProduct

Computer code from Sex roles and the evolution of parental care specialization

2019

Computer code for the mathematical model in Mathematica

ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONMathematicsofComputing_NUMERICALANALYSISMathematicsofComputing_GENERALComputer Science::Mathematical SoftwareComputer Science::Symbolic Computation16. Peace & justice
researchProduct

Computer code from Sex roles and the evolution of parental care specialization.

2019

Computer code for the mathematical model in Mathematica

ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONMathematicsofComputing_NUMERICALANALYSISMathematicsofComputing_GENERALComputer Science::Mathematical SoftwareComputer Science::Symbolic Computation16. Peace & justice
researchProduct

Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics

2007

The original publication is available at www.springerlink.com ; ISBN 978-3-540-75519-7 ; ISSN 0302-9743 (Print) 1611-3349 (Online); International audience; We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, \ie surfaces of algebraic degree~2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the adjacency graph of the arrangement. Our implementation is {\em complete} in the sense that it can handle all kinds of…

Discrete mathematicsDegree (graph theory)ComputationDegenerate energy levelsACM: I.: Computing Methodologies/I.1: SYMBOLIC AND ALGEBRAIC MANIPULATION/I.1.2: Algorithms/I.1.2.0: Algebraic algorithms020207 software engineering010103 numerical & computational mathematics02 engineering and technology[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]01 natural sciencesACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.3: EfficiencyCombinatoricsIntersection0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)Adjacency listGravitational singularity0101 mathematicsAlgebraic numberACM: G.: Mathematics of Computing/G.4: MATHEMATICAL SOFTWARE/G.4.0: Algorithm design and analysisMathematics
researchProduct

About Graph Unions and Intersections

2020

Summary In this article the union and intersection of a set of graphs are formalized in the Mizar system [5], based on the formalization of graphs in [7].

Discrete mathematicsgraph theoryApplied Mathematics020207 software engineeringgraph intersection0102 computer and information sciences02 engineering and technology68v20Computer Science::Digital Libraries01 natural sciencesComputational Mathematicsgraph union010201 computation theory & mathematicsComputer Science::Mathematical SoftwareQA1-9390202 electrical engineering electronic engineering information engineering05c76Graph (abstract data type)MathematicsMathematicsofComputing_DISCRETEMATHEMATICSMathematicsFormalized Mathematics
researchProduct

A Geant4 simulation package for the sage spectrometer

2012

International audience; A comprehensive Geant4 simulation was built for the SAGE spectrometer. The simulation package includes the silicon and germanium detectors, the mechanical structure and the electromagnetic fields present in SAGE. This simulation can be used for making predictions through simulating experiments and for comparing simulated and experimental data to better understand the underlying physics.

Electromagnetic fieldHistorySiliconSpectrometer010308 nuclear & particles physicsComputer sciencePhysics::Instrumentation and DetectorsDetectorchemistry.chemical_elementExperimental dataGermaniumComputerApplications_COMPUTERSINOTHERSYSTEMS[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesComputer Science ApplicationsEducationComputational scienceKokeellinen ydinfysiikkachemistry0103 physical sciencesComputer Science::Mathematical Software29.40.Wk Solid-state detectors 29.30.Kv X- and gamma-ray spectroscopy 07.85.Nc X-ray and gamma-ray spectrometers 29.30.Dn Electron spectroscopyExperimental nuclear physics010306 general physics
researchProduct