Search results for "Mathematics - Geometric Topology"
showing 10 items of 55 documents
A criterion for homeomorphism between closed Haken manifolds
2003
In this paper we consider two connected closed Haken manifolds denoted by M^3 and N^3, with the same Gromov simplicial volume. We give a simple homological criterion to decide when a given map f: M^3-->N^3 between M^3 and N^3 can be changed by a homotopy to a homeomorphism. We then give a convenient process for constructing maps between M^3 and N^3 satisfying the homological hypothesis of the map f.
On the topology of surfaces with the generalised simple lift property.
2020
In this paper, we study the geometry of surfaces with the generalised simple lift property. This work generalises previous results by Bernstein and Tinaglia, and it is motivated by the fact that leaves of a minimal lamination obtained as a limit of a sequence of properly embedded minimal disks satisfy the generalised simple lift property.
Coordinates for quasi-Fuchsian punctured torus space
1998
We consider complex Fenchel-Nielsen coordinates on the quasi-Fuchsian space of punctured tori. These coordinates arise from a generalisation of Kra's plumbing construction and are related to earthquakes on Teichmueller space. They also allow us to interpolate between two coordinate systems on Teichmueller space, namely the classical Fuchsian space with Fenchel-Nielsen coordinates and the Maskit embedding. We also show how they relate to the pleating coordinates of Keen and Series.
Anomalous Anosov flows revisited
2017
This paper is devoted to higher dimensional Anosov flows and consists of two parts. In the first part, we investigate fiberwise Anosov flows on affine torus bundles which fiber over 3-dimensional Anosov flows. We provide a dichotomy result for such flows --- they are either suspensions of Anosov diffeomorphisms or the stable and unstable distributions have equal dimensions. In the second part, we give a new surgery type construction of Anosov flows, which yields non-transitive Anosov flows in all odd dimensions.
Assouad dimension, Nagata dimension, and uniformly close metric tangents
2013
We study the Assouad dimension and the Nagata dimension of metric spaces. As a general result, we prove that the Nagata dimension of a metric space is always bounded from above by the Assouad dimension. Most of the paper is devoted to the study of when these metric dimensions of a metric space are locally given by the dimensions of its metric tangents. Having uniformly close tangents is not sufficient. What is needed in addition is either that the tangents have dimension with uniform constants independent from the point and the tangent, or that the tangents are unique. We will apply our results to equiregular subRiemannian manifolds and show that locally their Nagata dimension equals the to…
Vassiliev invariants for braids on surfaces
2000
We show that Vassiliev invariants separate braids on a closed oriented surface, and we exhibit an universal Vassiliev invariant for these braids in terms of chord diagrams labeled by elements of the fundamental group of the considered surface.
Categorical action of the extended braid group of affine type $A$
2017
Using a quiver algebra of a cyclic quiver, we construct a faithful categorical action of the extended braid group of affine type A on its bounded homotopy category of finitely generated projective modules. The algebra is trigraded and we identify the trigraded dimensions of the space of morphisms of this category with intersection numbers coming from the topological origin of the group.
Free vs. Locally Free Kleinian Groups
2015
Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < < 1 are free. On the other hand we construct for any ε > > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < < 1 + + ε.
THE HOMOLOGY OF DIGRAPHS AS A GENERALIZATION OF HOCHSCHILD HOMOLOGY
2010
J. Przytycki has established a connection between the Hochschild homology of an algebra $A$ and the chromatic graph homology of a polygon graph with coefficients in $A$. In general the chromatic graph homology is not defined in the case where the coefficient ring is a non-commutative algebra. In this paper we define a new homology theory for directed graphs which takes coefficients in an arbitrary $A-A$ bimodule, for $A$ possibly non-commutative, which on polygons agrees with Hochschild homology through a range of dimensions.
Quasi-isometrically embedded subgroups of braid and diffeomorphism groups
2005
We show that a large class of right-angled Artin groups (in particular, those with planar complementary defining graph) can be embedded quasi-isometrically in pure braid groups and in the group of area preserving diffeomorphisms of the disk fixing the boundary (with respect to the $L^2$-norm metric); this extends results of Benaim and Gambaudo who gave quasi-isometric embeddings of $F\_n$ and $\Z^n$ for all $n>0$. As a consequence we are also able to embed a variety of Gromov hyperbolic groups quasi-isometrically in pure braid groups and in the diffeomorphism group of the disk. Examples include hyperbolic surface groups, some HNN-extensions of these along cyclic subgroups and the fundame…