Search results for "Mathematics - Rings and Algebras"
showing 8 items of 28 documents
A note on the Schur multiplier of a nilpotent Lie algebra
2011
For a nilpotent Lie algebra $L$ of dimension $n$ and dim$(L^2)=m$, we find the upper bound dim$(M(L))\leq {1/2}(n+m-2)(n-m-1)+1$, where $M(L)$ denotes the Schur multiplier of $L$. In case $m=1$ the equality holds if and only if $L\cong H(1)\oplus A$, where $A$ is an abelian Lie algebra of dimension $n-3$ and H(1) is the Heisenberg algebra of dimension 3.
Bounded elements in certain topological partial *-algebras
2011
We continue our study of topological partial *algebras, focusing our attention to the interplay between the various partial multiplications. The special case of partial *-algebras of operators is examined first, in particular the link between the strong and the weak multiplications, on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis is extended to abstract topological partial *algebras, emphasizing the crucial role played by appropriate bounded elements, called $\M$-bounded. Finally, some remarks are made concerning representations in terms of the so-called partial GC*-algebras of operators.
Torsors for Difference Algebraic Groups
2016
We introduce a cohomology set for groups defined by algebraic difference equations and show that it classifies torsors under the group action. This allows us to compute all torsors for large classes of groups. We also develop some tools for difference algebraic geometry and present an application to the Galois theory of differential equations depending on a discrete parameter.
Graded polynomial identities and exponential growth
2009
Let $A$ be a finite dimensional algebra over a field of characteristic zero graded by a finite abelian group $G$. Here we study a growth function related to the graded polynomial identities satisfied by $A$ by computing the exponential rate of growth of the sequence of graded codimensions of $A$. We prove that the $G$-exponent of $A$ exists and is an integer related in an explicit way to the dimension of a suitable semisimple subalgebra of $A$.
An uncountable family of almost nilpotent varieties of polynomial growth
2017
A non-nilpotent variety of algebras is almost nilpotent if any proper subvariety is nilpotent. Let the base field be of characteristic zero. It has been shown that for associative or Lie algebras only one such variety exists. Here we present infinite families of such varieties. More precisely we shall prove the existence of 1) a countable family of almost nilpotent varieties of at most linear growth and 2) an uncountable family of almost nilpotent varieties of at most quadratic growth.
Fibered aspects of Yoneda's regular span
2018
In this paper we start by pointing out that Yoneda's notion of a regular span $S \colon \mathcal{X} \to \mathcal{A} \times \mathcal{B}$ can be interpreted as a special kind of morphism, that we call fiberwise opfibration, in the 2-category $\mathsf{Fib}(\mathcal{A})$. We study the relationship between these notions and those of internal opfibration and two-sided fibration. This fibrational point of view makes it possible to interpret Yoneda's Classification Theorem given in his 1960 paper as the result of a canonical factorization, and to extend it to a non-symmetric situation, where the fibration given by the product projection $Pr_0 \colon \mathcal{A} \times \mathcal{B} \to \mathcal{A}$ i…
Lattice operations on Rickart *-rings
2014
Various authors have investigated properties of the star order (introduced by M.P. Drazin in 1978) on algebras of matrices and of bounded linear operators on a Hilbert space. Rickart involution rings (*-rings) are a certain algebraic analogue of von Neumann algebras, which cover these particular algebras. In 1983, M.F. Janowitz proved, in particular, that, in a star-ordered Rickart *-ring, every pair of elements bounded from above has a meet and also a join. However, the latter conclusion seems to be based on some wrong assumption. We show that the conclusion is nevertheless correct, and provide equational descriptions of joins and meets for this case. We also present various general proper…
The dual and the double of a Hopf algebroid are Hopf algebroids
2017
Let $H$ be a $\times$-bialgebra in the sense of Takeuchi. We show that if $H$ is $\times$-Hopf, and if $H$ fulfills the finiteness condition necessary to define its skew dual $H^\vee$, then the coopposite of the latter is $\times$-Hopf as well. If in addition the coopposite $\times$-bialgebra of $H$ is $\times$-Hopf, then the coopposite of the Drinfeld double of $H$ is $\times$-Hopf, as is the Drinfeld double itself, under an additional finiteness condition.