Search results for "Matrices"
showing 10 items of 155 documents
Method specific Cholesky decomposition : Coulomb and exchange energies
2008
We present a novel approach to the calculation of the Coulomb and exchange contributions to the total electronic energy in self consistent field and density functional theory. The numerical procedure is based on the Cholesky decomposition and involves decomposition of specific Hadamard product matrices that enter the energy expression. In this way, we determine an auxiliary basis and obtain a dramatic reduction in size as compared to the resolution of identity (RI) method. Although the auxiliary basis is determined from the energy expression, we have complete control of the errors in the gradient or Fock matrix. Another important advantage of this method specific Cholesky decomposition is t…
Defining relations of the noncommutative trace algebra of two 3×3 matrices
2006
The noncommutative (or mixed) trace algebra $T_{nd}$ is generated by $d$ generic $n\times n$ matrices and by the algebra $C_{nd}$ generated by all traces of products of generic matrices, $n,d\geq 2$. It is known that over a field of characteristic 0 this algebra is a finitely generated free module over a polynomial subalgebra $S$ of the center $C_{nd}$. For $n=3$ and $d=2$ we have found explicitly such a subalgebra $S$ and a set of free generators of the $S$-module $T_{32}$. We give also a set of defining relations of $T_{32}$ as an algebra and a Groebner basis of the corresponding ideal. The proofs are based on easy computer calculations with standard functions of Maple, the explicit prese…
Matrix algebras with degenerate traces and trace identities
2022
In this paper we study matrix algebras with a degenerate trace in the framework of the theory of polynomial identities. The first part is devoted to the study of the algebra $D_n$ of $n \times n$ diagonal matrices. We prove that, in case of a degenerate trace, all its trace identities follow by the commutativity law and by pure trace identities. Moreover we relate the trace identities of $D_{n+1}$ endowed with a degenerate trace, to those of $D_n$ with the corresponding trace. This allows us to determine the generators of the trace T-ideal of $D_3$. In the second part we study commutative subalgebras of $M_k(F)$, denoted by $C_k$ of the type $F + J$ that can be endowed with the so-called st…
Superinvolutions on upper-triangular matrix algebras
2018
Let UTn(F) be the algebra of n×n upper-triangular matrices over an algebraically closed field F of characteristic zero. In [18], the authors described all abelian G-gradings on UTn(F) by showing that any G-grading on this algebra is an elementary grading. In this paper, we shall consider the algebra UTn(F) endowed with an elementary Z2-grading. In this way, it has a structure of superalgebra and our goal is to completely describe the superinvolutions which can be defined on it. To this end, we shall prove that the superinvolutions and the graded involutions (i.e., involutions preserving the grading) on UTn(F) are strictly related through the so-called superautomorphisms of this algebra. We …
Further results on generalized centro-invertible matrices
2019
[EN] This paper deals with generalized centro-invertible matrices introduced by the authors in Lebtahi et al. (Appl. Math. Lett. 38, 106¿109, 2014). As a first result, we state the coordinability between the classes of involutory matrices, generalized centro-invertible matrices, and {K}-centrosymmetric matrices. Then, some characterizations of generalized centro-invertible matrices are obtained. A spectral study of generalized centro-invertible matrices is given. In addition, we prove that the sign of a generalized centro-invertible matrix is {K}-centrosymmetric and that the class of generalized centro-invertible matrices is closed under the matrix sign function. Finally, some algorithms ha…
Abelian Gradings on Upper Block Triangular Matrices
2012
AbstractLet G be an arbitrary finite abelian group. We describe all possible G-gradings on upper block triangular matrix algebras over an algebraically closed field of characteristic zero.
Local Spectral Properties Under Conjugations
2021
AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.
A note on k-generalized projections
2007
Abstract In this note, we investigate characterizations for k -generalized projections (i.e., A k = A ∗ ) on Hilbert spaces. The obtained results generalize those for generalized projections on Hilbert spaces in [Hong-Ke Du, Yuan Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005) 313–318] and those for matrices in [J. Benitez, N. Thome, Characterizations and linear combinations of k -generalized projectors, Linear Algebra Appl. 410 (2005) 150–159].
Qualitative analysis of matrix splitting methods
2001
Abstract Qualitative properties of matrix splitting methods for linear systems with tridiagonal and block tridiagonal Stieltjes-Toeplitz matrices are studied. Two particular splittings, the so-called symmetric tridiagonal splittings and the bidiagonal splittings, are considered, and conditions for qualitative properties like nonnegativity and shape preservation are shown for them. Special attention is paid to their close relation to the well-known splitting techniques like regular and weak regular splitting methods. Extensions to block tridiagonal matrices are given, and their relation to algebraic representations of domain decomposition methods is discussed. The paper is concluded with ill…
Trace Identities on Diagonal Matrix Algebras
2020
Let Dn be the algebra of n × n diagonal matrices. On such an algebra it is possible to define very many trace functions. The purpose of this paper is to present several results concerning trace identities satisfied by this kind of algebras.