Search results for "Matrices"

showing 10 items of 155 documents

Method specific Cholesky decomposition : Coulomb and exchange energies

2008

We present a novel approach to the calculation of the Coulomb and exchange contributions to the total electronic energy in self consistent field and density functional theory. The numerical procedure is based on the Cholesky decomposition and involves decomposition of specific Hadamard product matrices that enter the energy expression. In this way, we determine an auxiliary basis and obtain a dramatic reduction in size as compared to the resolution of identity (RI) method. Although the auxiliary basis is determined from the energy expression, we have complete control of the errors in the gradient or Fock matrix. Another important advantage of this method specific Cholesky decomposition is t…

PhysicsPotential energy functionsBasis (linear algebra)General Physics and AstronomyMinimum degree algorithmUNESCO::FÍSICA::Química físicaPhysics and Astronomy (all)Computational chemistryFock matrixDensity functional theoryHadamard productApplied mathematicsSCF calculationsDensity functional theoryDensity functional theory ; Hadamard matrices ; Potential energy functions ; SCF calculationsHadamard matricesPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]ScalingCholesky decompositionSparse matrix
researchProduct

Defining relations of the noncommutative trace algebra of two 3×3 matrices

2006

The noncommutative (or mixed) trace algebra $T_{nd}$ is generated by $d$ generic $n\times n$ matrices and by the algebra $C_{nd}$ generated by all traces of products of generic matrices, $n,d\geq 2$. It is known that over a field of characteristic 0 this algebra is a finitely generated free module over a polynomial subalgebra $S$ of the center $C_{nd}$. For $n=3$ and $d=2$ we have found explicitly such a subalgebra $S$ and a set of free generators of the $S$-module $T_{32}$. We give also a set of defining relations of $T_{32}$ as an algebra and a Groebner basis of the corresponding ideal. The proofs are based on easy computer calculations with standard functions of Maple, the explicit prese…

Polynomial (hyperelastic model)Defining relationsTrace (linear algebra)Trace algebrasApplied MathematicsSubalgebraCenter (category theory)Free moduleNoncommutative geometryRepresentation theoryAlgebraGröbner basisGeneric matricesMatrix invariants and concomitantsGröbner basisMathematicsAdvances in Applied Mathematics
researchProduct

Matrix algebras with degenerate traces and trace identities

2022

In this paper we study matrix algebras with a degenerate trace in the framework of the theory of polynomial identities. The first part is devoted to the study of the algebra $D_n$ of $n \times n$ diagonal matrices. We prove that, in case of a degenerate trace, all its trace identities follow by the commutativity law and by pure trace identities. Moreover we relate the trace identities of $D_{n+1}$ endowed with a degenerate trace, to those of $D_n$ with the corresponding trace. This allows us to determine the generators of the trace T-ideal of $D_3$. In the second part we study commutative subalgebras of $M_k(F)$, denoted by $C_k$ of the type $F + J$ that can be endowed with the so-called st…

PolynomialAlgebra and Number TheoryTrace (linear algebra)Trace algebrasDiagonal matricesDegenerate energy levelsMathematics - Rings and AlgebrasType (model theory)Polynomial identitiesStirling numbersCombinatoricsMatrix (mathematics)Settore MAT/02 - Algebra16R10 16R30 16R50Rings and Algebras (math.RA)Diagonal matrixFOS: MathematicsDegenerate tracesAlgebra over a fieldCommutative propertyTrace algebras; Polynomial identities; Diagonal matrices; Degenerate traces; Stirling numbersMathematics
researchProduct

Superinvolutions on upper-triangular matrix algebras

2018

Let UTn(F) be the algebra of n×n upper-triangular matrices over an algebraically closed field F of characteristic zero. In [18], the authors described all abelian G-gradings on UTn(F) by showing that any G-grading on this algebra is an elementary grading. In this paper, we shall consider the algebra UTn(F) endowed with an elementary Z2-grading. In this way, it has a structure of superalgebra and our goal is to completely describe the superinvolutions which can be defined on it. To this end, we shall prove that the superinvolutions and the graded involutions (i.e., involutions preserving the grading) on UTn(F) are strictly related through the so-called superautomorphisms of this algebra. We …

PolynomialPure mathematicsAlgebra and Number Theory010102 general mathematicsPolynomial identity superinvolution upper-triangular matrices.Zero (complex analysis)Triangular matrixStructure (category theory)010103 numerical & computational mathematicsSingle class01 natural sciencesSuperalgebraSettore MAT/02 - Algebrapolynomial identity superinvolutions upper triangular matrices cocharacter0101 mathematicsAbelian groupAlgebraically closed fieldMathematics
researchProduct

Further results on generalized centro-invertible matrices

2019

[EN] This paper deals with generalized centro-invertible matrices introduced by the authors in Lebtahi et al. (Appl. Math. Lett. 38, 106¿109, 2014). As a first result, we state the coordinability between the classes of involutory matrices, generalized centro-invertible matrices, and {K}-centrosymmetric matrices. Then, some characterizations of generalized centro-invertible matrices are obtained. A spectral study of generalized centro-invertible matrices is given. In addition, we prove that the sign of a generalized centro-invertible matrix is {K}-centrosymmetric and that the class of generalized centro-invertible matrices is closed under the matrix sign function. Finally, some algorithms ha…

Pure mathematicsClass (set theory)Matrix sign functionCentro-invertible matrices010103 numerical & computational mathematicsSpectral analysisMatrius (Matemàtica)01 natural scienceslaw.inventionMatrix (mathematics)law0101 mathematicsComputer Science::Distributed Parallel and Cluster ComputingMathematicsCentrosymmetric matricesApplied MathematicsNumerical analysisState (functional analysis)INGENIERIA TELEMATICAInverse problem010101 applied mathematicsAnàlisi espectralInvertible matrixTheory of computationInverse problemMATEMATICA APLICADASign (mathematics)
researchProduct

Abelian Gradings on Upper Block Triangular Matrices

2012

AbstractLet G be an arbitrary finite abelian group. We describe all possible G-gradings on upper block triangular matrix algebras over an algebraically closed field of characteristic zero.

Pure mathematicsComputer Science::Information RetrievalGeneral Mathematics010102 general mathematicsTriangular matrixZero (complex analysis)Block (permutation group theory)010103 numerical & computational mathematicsGradings Upper Block Triangular Matrices01 natural sciencesSettore MAT/02 - Algebra0101 mathematicsAbelian groupAlgebraically closed fieldArithmeticMathematicsCanadian Mathematical Bulletin
researchProduct

Local Spectral Properties Under Conjugations

2021

AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.

Pure mathematicsGeneral MathematicsConjugations010102 general mathematicsSpectral propertiesLocal spectral propertiesHilbert space010103 numerical & computational mathematicsType (model theory)01 natural sciencesWeyl-type theorems for upper triangular operator matricessymbols.namesakeOperator matrixSettore MAT/05 - Analisi MatematicaCore (graph theory)symbols0101 mathematicsMathematics
researchProduct

A note on k-generalized projections

2007

Abstract In this note, we investigate characterizations for k -generalized projections (i.e., A k  =  A ∗ ) on Hilbert spaces. The obtained results generalize those for generalized projections on Hilbert spaces in [Hong-Ke Du, Yuan Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005) 313–318] and those for matrices in [J. Benitez, N. Thome, Characterizations and linear combinations of k -generalized projectors, Linear Algebra Appl. 410 (2005) 150–159].

Pure mathematicsNumerical AnalysisAlgebra and Number TheoryNormal matricesHilbert spaceCharacterization (mathematics)Matrius (Matemàtica)Normal matrixAlgebrasymbols.namesakeLinear algebrasymbolsDiscrete Mathematics and CombinatoricsSpectral projectionGeometry and TopologyÀlgebra linealLinear combinationProjectionst-Potent matricesMathematicsLinear Algebra and its Applications
researchProduct

Qualitative analysis of matrix splitting methods

2001

Abstract Qualitative properties of matrix splitting methods for linear systems with tridiagonal and block tridiagonal Stieltjes-Toeplitz matrices are studied. Two particular splittings, the so-called symmetric tridiagonal splittings and the bidiagonal splittings, are considered, and conditions for qualitative properties like nonnegativity and shape preservation are shown for them. Special attention is paid to their close relation to the well-known splitting techniques like regular and weak regular splitting methods. Extensions to block tridiagonal matrices are given, and their relation to algebraic representations of domain decomposition methods is discussed. The paper is concluded with ill…

Pure mathematicsSOR methodTridiagonal matrixLinear systemBlock (permutation group theory)Tridiagonal matrix algorithmDomain decomposition methodsComputer Science::Numerical AnalysisStieltjes-Toeplitz matricesMathematics::Numerical AnalysisAlgebraComputational MathematicsQualitative analysisComputational Theory and MathematicsMatrix splittingModeling and SimulationModelling and SimulationMatrix splitting methodsRegular and weak regular splittingsDomain decompositionAlgebraic numberQualitative analysisMathematicsComputers & Mathematics with Applications
researchProduct

Trace Identities on Diagonal Matrix Algebras

2020

Let Dn be the algebra of n × n diagonal matrices. On such an algebra it is possible to define very many trace functions. The purpose of this paper is to present several results concerning trace identities satisfied by this kind of algebras.

Pure mathematicsTrace (linear algebra)Diagonal matricesCodimensions; Diagonal matrices; Polynomial identities; TracesDiagonal matriceCodimensionsPolynomial identitiesSettore MAT/02 - AlgebraPolynomial identitieCodimensionTracesDiagonal matrixAlgebra over a fieldMathematicsTrace
researchProduct