Search results for "Matrix composite"
showing 10 items of 70 documents
Microstructure, mechanical characteristics and cell compatibility of β-tricalcium phosphate reinforced with biodegradable Fe–Mg metal phase
2015
The use of beta-tricalcium phosphate (β-TCP) ceramic as a bioresorbable bone substitute is limited to non-load-bearing sites by the material׳s brittleness and low bending strength. In the present work, new biocompatible β-TCP-based composites with improved mechanical properties were developed via reinforcing the ceramic matrix with 30 vol% of a biodegradable iron-magnesium metallic phase. β-TCP-15Fe15Mg and β-TCP-24Fe6Mg (vol%) composites were fabricated using a combination of high energy attrition milling, cold sintering/high pressure consolidation of powders at room temperature and annealing at 400 °C. The materials synthesized had a hierarchical nanocomposite structure with a nanocrystal…
On the response of flax fiber reinforced composites under salt-fog/dry conditions: Reversible and irreversible performances degradation
2022
Abstract Despite their scarce resistance to humid or wet conditions, natural fiber reinforced composites (NFRCs) seem to be able to partially recover their performances under discontinuous exposition to marine environment. To investigate this peculiarity, flax fiber reinforced composite was at first subjected to salt-fog spray condition at 35 °C for 15 and 30 days, respectively, and then stored in ‘‘dry” condition (i.e., 50% R.H. and 22 °C) between 0 and 21 days. The performances evolution was evaluated through flexural tests, water uptake and contact angle measurements. Moreover, the morphology of fractured mechanical samples was examined by using 3D optical microscope and scanning electro…
Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers
2015
Abstract We investigate the applicability of alumina nanofibers as a potential reinforcement material in ceramic matrix compounds by comparing the mechanical properties of individual nanofibers before and after annealing at 1400 °C. Mechanical testing is performed inside a scanning electron microscope (SEM), which enables observation in real time of the deformation and fracture of the fibers under loading, thereby providing a close-up inspection of the freshly fractured area in vacuum. Improvement of both the Young's modulus and the breaking strength for annealed nanofibers is demonstrated. Mechanical testing is supplemented with the structural characterization of the fibers before and afte…
A novel approach to prevent graphene oxide re-aggregation during the melt compounding with polymers
2015
Abstract The technology for the preparation of polymer-GO nanocomposites was investigated by studying the structure-properties relationships of two different systems, based on PA6 and EVA, fabricated by using different preparation methods, i.e. melt mixing, wet phase inversion, and the combination of the two. The morphology of nanocomposites resulted dramatically influenced by the technique adopted and showed to be the critical variable affecting the physical properties of the materials. Finally, the mechanical and dynamic-mechanical of the nanocomposites were improved by using the hybrid technique combining the two procedures.
Thermal and rheological characterisation of a thermoset matrix for filament winding modelling
2004
Rheo-kinetic behaviour of an epoxy resin, coupled with an aliphatic polyamines hardener, used in fibre reinforced plastics, was analysed comparing experimental data to theoretical models. Then the modelling of technological filament winding process for thermoset matrix composites, developed through a numerical code realized with MATLAB, is reported. The model includes winding and curing phase decoupling the manufacturing process into sub-models. Four sub-models are used: fibre motion, thermal, kinetic and rheological model. Considerable differences are obtained in process condition, using several thermal treatments. The numerical modelling helps to detect the process conditions to optimise…
Infrared Thermography assisted evaluation of static and fatigue Mode II fracture toughness in FRP composites
2019
Abstract The work proposes the combined use of a Modified Transverse Crack Tension (MTCT) test coupon and Infrared Thermography, to evaluate the static and fatigue behaviour of Fibre Reinforced Polymer composites under Mode II delamination. Artificial delaminations starters are added to the TCT coupon, whose effects on the Strain Energy Release Rate are discussed. Infrared Thermography and Thermoelastic Stress Analysis are implemented to investigate stresses and delaminations growths on two FRP materials: a pre-preg IM7/8552 carbon fibre-epoxy and a glass-fibre reinforced epoxy laminates. The thermographic, thermoelastic and second harmonic signals have been obtained and used to monitor the…
Effects of aging in salt spray conditions on flax and flax/basalt reinforced composites: Wettability and dynamic mechanical properties
2016
Abstract In the last years, the industrial policies are more attentive to issues concerning sustainability, recycling and environmental care. Therefore, the use of natural fibres in composite materials has spread more and more. This paper deals with flax and basalt fibres within an epoxy matrix by investigating the wettability and the dynamic mechanical properties of the resulting composites, subjected to long-term aging tests in critical environmental conditions. The first laminate was constituted by stacking ten layers of bidirectional flax fabrics. The second one was produced by replacing two external flax layers with two layers of basalt mat, for each side of the laminate. Both laminate…
Microstructural, mechanical and tribological properties of suspension plasma sprayed YSZ/h-BN composite coating
2018
Abstract Brittleness, relative high friction coefficient and wear rate limit the applications of ceramic coatings as wear-resistant layers. However, because embedding additives with ceramic matrix has demonstrated to be an effective way to improve coating performances, different contents and size of h-BN were added into an YSZ suspension. Afterwards, the YSZ/h-BN composite coatings were manufactured by suspension plasma spray and their tribological analysis indicated that: i) the reduction of the friction coefficient and wear rate can be achieved by incorporating h-BN into YSZ coating. ii) finer h-BN particle is more helpful to enhance the tribological properties of the coating. iii) the op…
Numerical simulations of the mechanical characteristics of glass fibre reinforced C-profiles
2006
A mechanical characterisation analysis on pultruded glass fibre reinforced C-shaped profiles, developed as modular construction elements to assemble fastening systems, such as doors, window frames and shutters is presented. The key idea is to perform the analysis, and all the related identification procedures of the material parameters, via a coupled approach, based on a limited number of standard laboratory tests and on the numerical finite element simulations of the same tests. The proposed approach allows one to identify all those material parameters which are difficult to detect, by means of simple laboratory experiments on specimens that are extracted from commercial products. It also …
A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites
2012
Experimental investigations on flax and glass fabrics reinforced epoxy specimens, i.e. FFRE and GFRE, submitted to fatigue tests are presented in this paper. Samples having [0/90]3S and [±45]3S stacking sequences, with similar fibre volume fractions have been tested under tension–tension fatigue loading. The specific stress-number of cycles to failure (S–N) curves, show that for the [0/90]3S specimens, FFRE have lower fatigue endurance than GFRE, but the [±45]3S FFRE specimens offer better specific fatigue endurance than similar GFRE, in the studied life range (<2 × 10^6). Overall, the three-stage stiffness degradation is observed in all cases except for [0/90]3S FFRE specimens, which prese…