Search results for "Matériaux"
showing 10 items of 117 documents
Quasi-static behaviour and damage assessment of flax/epoxy composites
2015
Experimental investigations were conducted on flax and E-glass fibres reinforced epoxy matrix composites subjected to quasi-static loadings. Flax/epoxy samples having [0]12, [90]12, [0/90]3S and [±45]3S stacking sequences, with a fibre volume fraction of 43% have been tested under tension, compression and in-plane shear loadings. Overall, the compression strength of glass/epoxy was 76% greater than for the flax/epoxy composite. The damage evolution of flax/epoxy of [0/90]3S and [±45]3S samples has been evaluated in terms of transverse crack densities with respect to the load increment. The crack density exhibited a classical “S” shaped pattern for [0/90]3S and linearly for [±45]3S specimens…
Fibre extraction from oleaginous flax for technical textile applications: influence of pre-processing parameters on fibre extraction yield, size dist…
2017
International audience; Cultivated primarily for its seeds, oleaginous flax could also be valued for the different fractions that can be extracted from the straw. However, as the straws are not harvested with the same technique and care than for the textile flax, the classical scutching technique cannot be used. As a consequence, an “all fibre” device was used to perform the separation of the different constituents of the oleaginous flax straws. The different fractions were quantified for two retting levels and for two degrees of rewetting of the stems. The physical and mechanical properties of fibres were then evaluated. It appears that the relative amount of fibres extracted from oleagino…
Springback of thick sheet AHSS subject to bending under tension
2012
Lien vers la version éditeur : http://www.sciencedirect.com/science/article/pii/S0020740312000677 The springback behavior of four advanced high-strength sheet steels (Dual-Phase, TRIP, ferrite-bainite) with thicknesses ranging from 1.2 to 4 mm was investigated by means of the bending-under-tension (BUT) test. The applicability of several guidelines from the literature was investigated experimentally and numerically. The monotonic decrease of springback as back force increased was confirmed for this category of sheet steels, and a general trend for the non-linear influence of the tool radius was observed. The influence of numerical factors on the predicted values of springback was investigat…
On the optimization of the cutting conditions for an improved corrosion resistance of OFHC copper
2018
International audience; Machining has a particular impact on the surface integrity and on corrosion resistance of components. In fact, material removal induces geometrical, mechanical and micro-structural modifications in the machined surface and sub-surface that alter the electrochemical behavior of the material, and so the aging process. In this study, oxygen free high conductivity copper (OFHC) has machined under orthogonal cutting conditions using uncoated cemented carbide tools. Then, the corrosion resistance in 0.1 M NaCl salt fog atmosphere of the machined samples is analyzed. Finally, the optimal cutting conditions, including the tool geometry, for an improved corrosion resistance a…
Aluminum to titanium laser welding-brazing in V-shaped grooveI
2017
International audience; Laser assisted joining of AA5754 aluminum alloy to T40 titanium with use of Al-Si filler wires was carried out. Continuous Yb:YAG laser beam was shaped into double spot tandem and defocalized to cover larger interaction zone in V shaped groove. Experimental design method was applied to study the influence of operational parameters on the tensile properties of the joints. Microstructure examination and fractography study were carried out to understand the relation between local phase content and fracture mode.Within defined window of operational parameters, statistically important factors that influenced the strength of T40 to AA5754 joints in V groove configuration w…
Friction Model for Tool/Work Material Contact Applied to Surface Integrity Prediction in Orthogonal Cutting Simulation
2017
Abstract Tribological behavior at both tool/chip and tool/work material interfaces should be highly considered while simulating the machining process. In fact, it is no longer accurate to suppose one independent constant friction coefficient at the tool/chip interface, since in reality it depends on the applied contact conditions, including the sliding velocity and pressure. The contact conditions at both above mentioned interfaces may affect the thermal and mechanical phenomena and consequently the surface integrity predictions. In this article, the influence of contact conditions (sliding velocity) on the tribological behavior of uncoated tungsten carbide tool against OFHC copper work mat…
First glimpse of the soft x-ray induced excited spin-state trapping effect dynamics on spin cross-over molecules.
2013
The dynamics of the soft x-ray induced excited spin state trapping (SOXIESST) effect of Fe(phen)(2)(NCS)(2) (Fe-phen) powder have been investigated by x-ray absorption spectroscopy (XAS) using the total electron yield method, in a wide temperature range. The low-spin (LS) state is excited into the metastable high-spin (HS) state at a rate that depends on the intensity of the x-ray illumination it receives, and both the temperature and the intensity of the x-ray illumination will affect the maximum HS proportion that is reached. We find that the SOXIESST HS spin state transforms back to the LS state at a rate that is similar to that found for the light induced excited spin state trapping (LI…
Development of LIBS for online analysis of solid nuclear materials
2015
With the objective to implement a fast, online analysis technique for control of solid metal nuclear materials, laser-induced breakdown spectroscopy (LIBS) technique is developed for quantitative analysis in uranium and plutonium. Since these matrices have a very dense emission spectrum in the UV-Visible range, the Vacuum Ultra-Violet (VUV) spectral range, less rich in lines, is explored. The aim of this thesis is to perform the analytical development of VUV-LIBS for quantitative analysis between 500 and 5000 ppm with an uncertainty of 3%. For that purpose, four steps were defined. First, for practical and safety reasons, it is generally better to perform experiments on surrogate materials.…
Design and computer simulations of 2D MeX2 solid-state nanopores for DNA and protein detection analysis
2020
Solid-state nanopores (SSN) have emerged as versatile devices for biomolecule analysis. One of the most promising applications of SSN is DNA and protein sequencing, at a low cost and faster than the current standard methods. SSN sequencing is based on the measurement of ionic current variations when a biomolecule embedded in electrolyte is driven through a nanopore under an applied electric potential. As a biomolecule translocates through the nanopore, it occupies the pore volume and blocks the passage of ions. Hence, ultrafast monitoring of ionic flow during the passage of a biomolecule yields information about its structure and chemical properties. The size of the sensing region in SSN is…
Finite element analysis of laser shock peening of 2050-T8 aluminum alloy
2015
Laser shock processing is a recently developed surface treatment designed to improve the mechanical properties and fatigue performance of materials, by inducing a deep compressive residual stress field. The purpose of this work is to investigate the residual stress distribution induced by laser shock processing in a 2050-T8 aeronautical aluminium alloy with both X-ray diffraction measurements and 3D finite element simulation. The method of X-ray diffraction is extensively used to characterize the crystallographic texture and the residual stress crystalline materials at different scales (macroscopic, mesoscopic and microscopic).Shock loading and materials’ dynamic response are experimentally…