Search results for "McShane"

showing 10 items of 19 documents

Riemann-Type Definition of the Improper Integrals

2004

Riemann-type definitions of the Riemann improper integral and of the Lebesgue improper integral are obtained from McShane's definition of the Lebesgue integral by imposing a Kurzweil-Henstock's condition on McShane's partitions.

Statistics::TheoryMathematics::Functional AnalysisMathematics::Dynamical SystemsStatistics::ApplicationsGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsRiemann integralType (model theory)Lebesgue integrationMcShane's partitionRiemann hypothesissymbols.namesakeKurzweil-Henstock's partitionOrdinary differential equationImproper integralsymbolsMathematicsCzechoslovak Mathematical Journal
researchProduct

MR2684422 Deville, Robert; Rodríguez, José Integration in Hilbert generated Banach spaces. Israel J. Math. 177 (2010), 285–306. (Reviewer: Luisa Di P…

2010

2010), 285–306, 46Exx (46J10) It is known that each McShane integrable function is also Pettis integrable, while the reverse implication in general is not true. The equivalence of McShane and Pettis integrability depends on the target Banach space X and has been proven: by R. A. Gordon [Illinois J. Math. 34 (1990), no. 3, 557–567, 26A42 (28B15 46G10 49Q15)], and by D. H. Fremlin and J. Mendoza [Illinois J. Math. 38 (1994), no. 1, 127–147, 46G10 (28B05)] if X is separable, by D. Preiss and the reviewer [Illinois J. Math. 47 (2003), no. 4, 1177–1187. 28B05 (26A39 26E25 46G10)] if X=c_0(\Gamma) (for any set \Gamma) or X is super-reflexive, by the second author of the present paper [J. Math. An…

McShane integral Pettis integralSettore MAT/05 - Analisi Matematica
researchProduct

On the equivalence of McShane and Pettis integrability in non-separable Banach spaces

2009

Abstract We show that McShane and Pettis integrability coincide for functions f : [ 0 , 1 ] → L 1 ( μ ) , where μ is any finite measure. On the other hand, assuming the Continuum Hypothesis, we prove that there exist a weakly Lindelof determined Banach space X, a scalarly null (hence Pettis integrable) function h : [ 0 , 1 ] → X and an absolutely summing operator u from X to another Banach space Y such that the composition u ○ h : [ 0 , 1 ] → Y is not Bochner integrable; in particular, h is not McShane integrable.

Discrete mathematicsPettis integralPure mathematicsMcShane integralIntegrable systemApplied MathematicsBanach spaceProjectional resolution of the identitySeparable spaceAbsolutely summing operatorScalarly null functionWeakly Lindelöf determined Banach spacePettis integralEquivalence (measure theory)Continuum hypothesisAnalysisMathematicsProperty (M)Journal of Mathematical Analysis and Applications
researchProduct

On weakly measurable stochastic processes and absolutely summing operators

2006

A characterization of absolutely summing operators by means of McShane integrable stochastic processes is considered

Pettis integralSettore MAT/05 - Analisi MatematicaStochastic processGeneral MathematicsMathematical analysisApplied mathematicsPettis integral McShane integral amart uniform amart absolutely summing operatorsMathematicsMathematica Bohemica
researchProduct

Non absolutely convergent integrals of functions taking values in a locally convex space

2006

Properties of McShane and Kurzweil-Henstock integrable functions taking values in a locally convex space are considered and the relations with other integrals are studied. A convergence theorem for the Kurzweil-Henstock integral is given

Convex analysisMcShane integralGeneral MathematicsMathematical analysisConvex setProper convex functionSubderivativeKurzweil-Henstock integralChoquet theory28B05McShaneintegral Pettis integralSettore MAT/05 - Analisi MatematicaLocally convex topological vector spacelocally convex spacesPettis integralConvex combinationAbsolutely convex setMathematics46G10
researchProduct

MR2886259 Naralenkov, Kirill Several comments on the Henstock-Kurzweil and McShane integrals of vector-valued functions. Czechoslovak Math. J. 61(136…

2012

In this paper the author essentially discusses the difference between the Henstock-Kurzweil and McShane integrals of vector-valued functions from the descriptive point of view. He first considers three notions of absolute continuity for vector-valued functions AC, AC*, AC_{\delta}) and studies the relationships between the corresponding classes of functions. Then he uses such notions to give descriptive characterizations of the Henstock-Kurzweil and McShane integrable functions.

Henstock-Kurzweil and McShane integralsSettore MAT/05 - Analisi Matematica
researchProduct

Riemann type integrals for functions taking values in a locally convex space

2006

The McShane and Kurzweil-Henstock integrals for functions taking values in a locally convex space are defined and the relations with other integrals are studied. A characterization of locally convex spaces in which Henstock Lemma holds is given.

Convex analysisPure mathematicsGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsProper convex functionConvex setSubderivativeChoquet theoryLocally convex topological vector spaceConvex combinationPettis integral McShane integral Kurzweil-Henstock integral locally convex spacesAbsolutely convex setMathematicsCzechoslovak Mathematical Journal
researchProduct

A Birkhoff type integral and the Bourgain property in a locally convex space

2007

An integral, called the $Bk$-integral, for functions taking values in a locally convex space is defined. Properties of $Bk$-integrable functions are considered and the relations with other integrals are studied. Moreover the $Bk$-integrability of bounded functions is compared with the Bourgain property.

Pettis integralMcShane integralPure mathematicsMathematical analysisConvex setlocally convex spaceRiemann–Stieltjes integralRiemann integralSingular integral28B05symbols.namesakePettis integral McShane integral Birkho integral locally convex spacesBounded functionPettis integralsymbolsPaley–Wiener integralGeometry and TopologyDaniell integralAnalysisBirkhoff integral46G10Mathematics
researchProduct

Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values

2013

Fremlin (Ill J Math 38:471–479, 1994) proved that a Banach space valued function is McShane integrable if and only if it is Henstock and Pettis integrable. In this paper we prove that the result remains valid also in case of multifunctions with compact convex values being subsets of an arbitrary Banach space (see Theorem 3.4). Di Piazza and Musial (Monatsh Math 148:119–126, 2006) proved that if \(X\) is a separable Banach space, then each Henstock integrable multifunction which takes as its values convex compact subsets of \(X\) is a sum of a McShane integrable multifunction and a Henstock integrable function. Here we show that such a decomposition is true also in case of an arbitrary Banac…

Pettis integralDiscrete mathematicsMathematics::Functional AnalysisPure mathematicsIntegrable systemGeneral MathematicsMultifunction McShane integral Henstock integral Pettis integral Henstock--Kurzweil--Pettis integral selectionMathematics::Classical Analysis and ODEsBanach spaceRegular polygonFunction (mathematics)Separable spaceSettore MAT/05 - Analisi MatematicaLocally integrable functionMathematicsMonatshefte für Mathematik
researchProduct

Gauge integrals and selections of weakly compact valued multifunctions

2016

In the paper Henstock, McShane, Birkhoff and variationally multivalued integrals are studied for multifunctions taking values in the hyperspace of convex and weakly compact subsets of a general Banach space X. In particular the existence of selections integrable in the same sense of the corresponding multifunctions has been considered.

Pure mathematicsIntegrable systemSelection (relational algebra)Multifunction; Selection; Set-valued Pettis Henstock and McShane integrals; Analysis; Applied MathematicsSet-valued PettisBanach spaceMathematics::General Topology01 natural sciences28B20 26E25 26A39 28B05 46G10 54C60 54C65Settore MAT/05 - Analisi MatematicaFOS: Mathematics0101 mathematicsSelectionMathematicsMathematics::Functional AnalysisApplied Mathematics010102 general mathematicsMathematical analysisRegular polygonGauge (firearms)Functional Analysis (math.FA)Henstock and McShane integralsComputer Science::Other010101 applied mathematicsMathematics - Functional AnalysisHyperspaceMultifunctionAnalysisMultifunction set-valued Pettis Henstock and McShane integrals selection
researchProduct