Search results for "Mechanics of Material"
showing 10 items of 2608 documents
Electric current induced modification of germanium nanowire NEM switch contact.
2015
We present an investigation of contact properties of a germanium (Ge) nanowire based nanoelectromechanical (NEM) switch in its ON state. The contact stiffness in the ON state was evaluated by detecting the nanowire's resonance frequency. It was found that the resonance frequency increases when electric current flows through the nanowire/counter electrode contact area. The reason for modification in the contact area is referred to as electric-current-induced processes in the native oxide layer covering the nanowires. The presented resonance shift method is a simple way to indicate strengthening of the nanowire/counter electrode contact area without disassembling the contact.
Simplified analytical model for moment–axial force domain in the presence of shear in R.C. members externally strengthened with steel cages
2015
Equations for a hand calculation of moment–axial force domain in the presence of shear for R.C. beam/column externally strengthened with steel angles and strips are developed. The analytical derivation is made assuming, for axial load and flexure, the equivalent stress-block parameters for internal forces, considering the confinement effects induced in the concrete core by external cages both in the cases of strips or angles yielding. Limit states due to bond failure, concrete crushing and yielding of steel angles and strips in flexure and in shear, including moment-to-shear interaction, are considered. The proposed model gives results in a good agreement with available experimental data an…
On the instability of an axially moving elastic plate
2010
Problems of stability of an axially moving elastic band travelling at constant velocity between two supports and experiencing small transverse vibrations are considered in a 2D formulation. The model of a thin elastic plate subjected to bending and tension is used to describe the bending moment and the distribution of membrane forces. The stability of the plate is investigated with the help of an analytical approach. In the frame of a general dynamic analysis, it is shown that the onset of instability takes place in the form of divergence (buckling). Then the static forms of instability are investigated, and critical regimes are studied as functions of geometric and mechanical problem param…
Folate-targeted supramolecular vesicular aggregates based on polyaspartyl-hydrazide copolymers for the selective delivery of antitumoral drugs.
2010
Supramolecular vesicular aggregates (SVAs) have the advantage of combining the safe and biocompatible properties of colloidal vesicular carriers based on phospholipids with those of polymeric materials, i.e. polyaspartyl-hydrazide (PAHy) copolymers. To provide SVAs with a certain tumour selectivity, folate moieties were chemically conjugated to PAHy copolymers. Physicochemical properties (mean sizes, polydispersity index and zeta potential) of folate-targeted SVAs (FT-SVAs) loaded with gemcitabine were evaluated. The antiproliferative and anticancer activity of gemcitabine-loaded FT-SVAs was evaluated against two cancer cell lines, i.e. MCF-7 cells which over-express the folate receptor and…
Processing and characterization of highly oriented fibres of biodegradable nanocomposites
2015
Abstract Biodegradable polymeric materials are becoming day by day ever more important in packaging, agriculture, single-use cutleries and other large consumer applications. The major part of those materials is used under the form of film, i.e. subjected to elongational flow, but the main problem is that they often offer poor mechanical properties. Adding nanofillers, like Multi Walled Carbon Nanotubes (MWCNTs) may solve this problem but only if there is a full control of their orientation inside the material. Aim of this work is to investigate the processing-properties-morphology relationships for a system prepared under elongation flow of MaterBi and commercial MWCNTs. The materials were …
High performance composites containing perfluoropolyethers-functionalized carbon-based nanoparticles: Rheological behavior and wettability
2016
Abstract Ultra High Molecular Weight Polyethylene (UHMWPE) based composites filled with carbon nanotubes (CNTs) and carbon black (CB) modified by perfluoropolyethers (PFPE) have been formulated. All composites show a segregated morphology with nanofillers selectively localized at the polymer particle–particle interface. The composites rheological properties have been deeply investigated: the PFPE functionalities linked on CNTs facilitate the semi-3D nanofillers network formation in the composites that show a solid-like behaviour even at lower investigated filler contents, reaching the rheological percolation threshold at lower nanofiller content than bare CNTs filled composites. For composi…
Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene
2007
Bioencapsulation is an intriguing way to immobilize biological materials, including cells, in silica, metal-oxides or hybrid sol-gel polymers. Until now only the sol-gel precursor technology was utilized to immobilize bacteria or yeast cells in silica. With the discovery of silicatein, an enzyme from demosponges that catalyzes the formation of poly(silicate), it became possible to synthesize poly(silicate) under physiological (ambient) conditions. Here we show that Escherichia coli can be transformed with the silicatein gene, its expression level in the presence of isopropyl beta-D-thiogalactopyranoside (IPTG) can be efficiently intensified by co-incubation with silicic acid. This effect co…
Optimización de las propiedades de emulsión de betún para la estabilización de balasto
2017
Ballasted track, while providing economical and practical advantages, is associated with high costs and material consumption due to frequent maintenance. More sustainable alternatives to conventional ballasted trackbeds should therefore aim at extending its durability, particularly considering ongoing increases in traffic speed and loads. In this regard, the authors have investigated a solution consisting of bitumen stabilised ballast (BSB), designed to be used for new trackbeds as well as in reinforcing existing ones. This study presents the idea behind the technology and then focuses on a specific part of its development: the optimisation of bitumen emulsion properties and dosage in relat…
Numerical modelling of the tensile behaviour of BFRCM strips
2019
This paper aims at investigating the tensile behaviour of basalt fibres on cementitious matrix for the strengthening of masonry structures. The use of Basalt Fibre Reinforced Cementitious Matrix (BFRCM) is favourably considered by the scientific community because it represents a natural composite material with high compatibility with stone and masonry substrate. The study is developed through the generation of Finite Element (FE) models capable of reproducing the tensile behaviour of BFRCM strips with different number of layers of grid. For the scope, the micro-modelling approach is adopted assuming different levels of detail for the simulation of the interface constitutive behaviour. Fibre…
A review on basalt fibre and its composites
2015
Abstract In recent years, both industrial and academic world are focussing their attention toward the development of sustainable composites, reinforced with natural fibres. In particular, among the natural fibres (i.e. animal, vegetable or mineral) that can be used as reinforcement, the basalt ones represent the most interesting for their properties. The aim of this review is to illustrate the results of research on this topical subject. In the introduction, mechanical, thermal and chemical properties of basalt fibre have been reviewed. Moreover, its main manufacturing technologies have been described. Then, the effect of using this mineral fibre as reinforcement of different matrices as po…