Search results for "Mel"

showing 10 items of 6009 documents

Glucagon-like peptide-1 (GLP-1) receptor agonists and their cardiovascular benefits-The role of the GLP-1 receptor.

2021

Cardiovascular outcome trials revealed cardiovascular benefits for type 2 diabetes mellitus patients when treated with long-acting glucagon-like peptide-1 (GLP-1) receptor agonists. In the last decade, major advances were made characterising the physiological effects of GLP-1 and its action on numerous targets including brain, liver, kidney, heart and blood vessels. However, the effects of GLP-1 and receptor agonists, and the GLP-1 receptor on the cardiovascular system have not been fully elucidated. We compare results from cardiovascular outcome trials of GLP-1 receptor agonists and review pleiotropic clinical and preclinical data concerning cardiovascular protection beyond glycaemic contr…

0301 basic medicineAgonistendocrine systemmedicine.drug_classDiseasePharmacologyCardiovascular SystemGlucagon-Like Peptide-1 Receptor03 medical and health sciences0302 clinical medicineGlucagon-Like Peptide 1Diabetes mellitusMedicineHumansHypoglycemic AgentsReceptorGlucagon-like peptide 1 receptorPharmacologyKidneybusiness.industrydigestive oral and skin physiologyType 2 Diabetes Mellitusmedicine.diseaseGlucagon-like peptide-1030104 developmental biologymedicine.anatomical_structureDiabetes Mellitus Type 2Cardiovascular Diseasesbusinesshormones hormone substitutes and hormone antagonists030217 neurology & neurosurgeryBritish journal of pharmacology
researchProduct

Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells

2016

Summary Dietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs) sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5) are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca2+-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND), a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent wit…

0301 basic medicineAmino Acid Transport Systemsheavy-chainmedicine.medical_treatmentInsulinsamino acid transporter0302 clinical medicinegenetics [Drosophila Proteins]cytology [Drosophila melanogaster]Glutamate DehydrogenaseHemolymphInsulin-Secreting Cellsmetabolism [Drosophila melanogaster]HemolymphDrosophila;Drosophila insulin-like peptides;amino acid transporter;food;glutamate dehydrogenase;glycemia;growth;insulin-producing cells;minidiscs;starvationDrosophila ProteinsProtein Isoformsmetabolism [Calcium]genetics [Insulins]genetics [Amino Acid Transport Systems]lcsh:QH301-705.5minidiscsGene knockdowncytology [Larva]pancreatic beta-cellglutamate dehydrogenaseBrainmetabolism [Hemolymph]secretionDrosophila melanogasterBiochemistryLarvaAlimentation et NutritionDrosophilaLeucineSignal Transductionglucose-transportgenetics [Glutamate Dehydrogenase]genetics [Protein Isoforms]growthamino-acidsmetabolism [Drosophila Proteins][SDV.BC]Life Sciences [q-bio]/Cellular BiologyNutrient sensingmetabolism [Larva]Biologyinsulin-producing cellsArticleGeneral Biochemistry Genetics and Molecular Biologymetabolism [Amino Acid Transport Systems]metabolism [Insulins]03 medical and health sciencesLeucineparasitic diseasesmedicineFood and NutritionAnimalsddc:610cytology [Insulin-Secreting Cells]cardiovascular diseasesAmino acid transporterMnd protein Drosophilaadministration & dosage [Leucine]metabolism [Protein Isoforms]Ilp5 protein Drosophilacytology [Brain]foodGlutamate dehydrogenaseInsulinNeurosciencesstarvationGlucose transportermetabolism [Insulin-Secreting Cells]glutamate-dehydrogenasel-leucineglycemia030104 developmental biologyGene Expression Regulationlcsh:Biology (General)metabolism [Brain]metabolism [Glutamate Dehydrogenase]Neurons and Cognitionmetabolism [Leucine]CalciumDrosophila insulin-like peptidesmetabolismfat-cells030217 neurology & neurosurgeryCell Reports
researchProduct

New Pharmacological Opportunities for Betulinic Acid

2017

AbstractBetulinic acid is a naturally occurring pentacyclic lupane-type triterpenoid usually isolated from birch trees, but present in many other botanical sources. It is found in different plant organs, both as a free aglycon and as glycosyl derivatives. A wide range of pharmacological activities has been described for this triterpenoid, including antiviral and antitumor effects. In addition, several other interesting properties have been identified in the fields of immunity and metabolism, namely antidiabetic, antihyperlipidemic, and anti-inflammatory activities. Taken together, these latter three properties make betulinic acid a highly interesting prospect for treating metabolic syndrome…

0301 basic medicineAnti-Inflammatory AgentsPharmaceutical ScienceAntineoplastic AgentsAntiviral AgentsAnalytical Chemistry03 medical and health scienceschemistry.chemical_compoundTriterpenoidAnti-Infective AgentsBetulinic acidDrug DiscoveryAnimalsHumansHypoglycemic AgentsGlycosylBetulinic AcidDyslipidemiasHypolipidemic AgentsInflammationMetabolic SyndromePharmacologyNatural productTraditional medicineCytotoxinsOrganic ChemistryTriterpenes030104 developmental biologyDiabetes Mellitus Type 2Complementary and alternative medicinechemistryMolecular MedicinePentacyclic TriterpenesPentacyclic TriterpenesPlanta Medica
researchProduct

Zinc oxide nanoparticles mediated cytotoxicity, mitochondrial membrane potential and level of antioxidants in presence of melatonin.

2017

Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products and are currently being investigated for biomedical applications. However, they have the potential to interact with macromolecules like proteins, lipids and DNA within the cells which makes the safe biomedical application difficult. The toxicity of the ZnO NP is mainly attributed reactive oxygen species (ROS) generation. Different strategies like iron doping, polymer coating and external supply of antioxidants have been evaluated to minimize the toxic potential of ZnO NPs. Melatonin is a hormone secreted by the pineal gland with great antioxidant properties. The melatonin is known to protect cells from ROS inducing …

0301 basic medicineAntioxidantFree RadicalsCell Survivalmedicine.medical_treatment02 engineering and technologyNitric OxideBiochemistryAntioxidantsNitric oxideCell LineMelatonin03 medical and health sciencesPineal glandchemistry.chemical_compoundMiceStructural BiologymedicineAnimalsDrug InteractionsCytotoxicityMolecular BiologyMelatoninchemistry.chemical_classificationMembrane potentialMembrane Potential MitochondrialReactive oxygen speciesBrainGeneral Medicine021001 nanoscience & nanotechnology030104 developmental biologymedicine.anatomical_structurechemistryBiochemistryToxicityNanoparticlesZinc Oxide0210 nano-technologyReactive Oxygen Specieshormones hormone substitutes and hormone antagonistsmedicine.drugInternational journal of biological macromolecules
researchProduct

In vitro effects of vitamins C and E, n-3 and n-6 PUFA and n-9 MUFA on placental cell function and redox status in type 1 diabetic pregnant women.

2016

IF 2.972; International audience; The aim of this investigation was to determine the in vitro effects of vitamin C and E, n-3 and n-6 PUFA and n-9 MUFA on placental cell proliferation and function in type 1 diabetes. Placenta tissues were collected from 30 control healthy and 30 type 1 diabetic women at delivery. Placental cells were isolated and were cultured in RPMI medium supplemented with vitamin C (50 μM), vitamin E (50 μM), n-3 PUFA (100 μM), n-6 PUFA (100 μM) or n-9 MUFA (100 μM). Cell proliferation, cell glucose uptake and intracellular oxidative status were investigated. Our results showed that basal placental cell proliferation, glucose uptake, malondialdehyde (MDA) and carbonyl p…

0301 basic medicineAntioxidantGlucose uptakemedicine.medical_treatmentPlacentaProliferationPregnancy in DiabeticsAscorbic Acidmedicine.disease_causeAntioxidantsFatty Acids Monounsaturatedchemistry.chemical_compound0302 clinical medicinePregnancyMalondialdehydeVitamin EVitamin C[ SDV.MHEP.GEO ] Life Sciences [q-bio]/Human health and pathology/Gynecology and obstetrics030219 obstetrics & reproductive medicineTrophoblastObstetrics and Gynecologyfood and beveragesCatalasemedicine.anatomical_structureType 1 diabetes[ SDV.BDLR ] Life Sciences [q-bio]/Reproductive BiologyHypertensionFemalelipids (amino acids peptides and proteins)Oxidant/antioxidant statusOxidation-ReductionIntracellularPolyunsaturated fatty-acidsVitaminAdultRiskmedicine.medical_specialtyPlacental cellsBiology03 medical and health sciencesYoung AdultInternal medicinePlacentaFatty Acids Omega-6Fatty Acids Omega-3medicineHumans[ SDV.BDD ] Life Sciences [q-bio]/Development BiologyCell ProliferationVitamin CSuperoxide DismutaseVitamin EMellitusPreeclampsiaDiet030104 developmental biologyEndocrinologyDiabetes Mellitus Type 1MetabolismReproductive MedicinechemistryOxidative stressOxidative stressPUFADevelopmental Biology
researchProduct

Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by su…

2016

A study was carried out to produce functional pasta by adding bran aqueous extract (BW) and bran oleoresin (BO) obtained using ultrasound and supercritical CO2, respectively, or a powdery lyophilized tomato matrix (LT). The bioactive compounds, hydrophilic and lipophilic antioxidant activity (HAA and LAA) in vitro, were evaluated. BW supplementation did not improve antioxidant activity, whilst LT pasta showed unconventional taste and odor. BO pasta had good levels of tocochromanols (2551 μg/100 g pasta f.w.) and carotenoids (40.2 μg/100 g pasta f.w.), and the highest HAA and LAA. The oleoresin altered starch swelling and gluten network, as evidenced by scanning electron microscopy, therefor…

0301 basic medicineAntioxidantGlutensStarchmedicine.medical_treatmentAntioxidantsGreen extraction technologieAnalytical Chemistry03 medical and health scienceschemistry.chemical_compound0404 agricultural biotechnologySolanum lycopersicummedicineFood scienceOleoresinCarotenoidTocochromanolTriticumCarotenoidchemistry.chemical_classification030109 nutrition & dieteticsSupercritical carbon dioxideBranPlant Extractsfood and beveragesStarch04 agricultural and veterinary sciencesGeneral MedicineCarotenoids040401 food scienceGlutenSupercritical fluidSettore AGR/02 - Agronomia E Coltivazioni ErbaceeSmellFunctional pastaPhenolicchemistryTriticum durumTasteFood FortifiedFood ScienceFood Chemistry
researchProduct

Dietary phytochemicals in the protection against oxysterol-induced damage.

2017

The intake of fruits and vegetables is associated with reduced incidence of many chronic diseases. These foods contain phytochemicals that often possess antioxidant and free radical scavenging capacity and show anti-inflammatory action, which are also the basis of other bioactivities and health benefits, such as anticancer, anti-aging, and protective action for cardiovascular diseases, diabetes mellitus, obesity and neurodegenerative disorders. Many factors can be included in the etiopathogenesis of all of these multifactorial diseases that involve oxidative stress, inflammation and/or cell death processes, oxysterols, i.e. cholesterol oxidation products (COPs) as well as phytosterol oxidat…

0301 basic medicineAntioxidantOxysterolmedicine.medical_treatmentPhytochemicalsContext (language use)PhytochemicalPharmacologymedicine.disease_causeBiochemistryAntioxidants03 medical and health scienceschemistry.chemical_compoundOxysterol0302 clinical medicineDiabetes mellitusmedicinePhytosterol oxidation productAnimalsHumansCholesterol oxidation productMolecular BiologyCell DeathAnimalCholesterolPhytosterolOrganic ChemistryHuman chronic diseaseCell BiologyOxysterolsmedicine.diseaseObesity030104 developmental biologyBiochemistrychemistry030220 oncology & carcinogenesisChronic DiseaseAntioxidantOxidative stressHumanChemistry and physics of lipids
researchProduct

Regulation of vascular function and inflammation via cross talk of reactive oxygen and nitrogen species from mitochondria or nadph oxidase—implicatio…

2020

Oxidative stress plays a key role for the development of cardiovascular, metabolic, and neurodegenerative disease. This concept has been proven by using the approach of genetic deletion of reactive oxygen and nitrogen species (RONS) producing, pro-oxidant enzymes as well as by the overexpression of RONS detoxifying, antioxidant enzymes leading to an amelioration of the severity of diseases. Vice versa, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of RONS detoxifying enzymes. We have previously identified cross talk mechanisms between different sources of RONS, which can amplify the oxidative stress-m…

0301 basic medicineAntioxidantmedicine.medical_treatmentReview030204 cardiovascular system & hematologyMitochondrionmedicine.disease_causelcsh:Chemistry0302 clinical medicineEndothelial dysfunctionEndothelial dysfunctionlcsh:QH301-705.5SpectroscopyNADPH oxidasebiologyChemistryGeneral MedicineReactive Nitrogen SpeciesComputer Science ApplicationsCell biologyMitochondriaCardiovascular DiseasesDisease Progressionmedicine.symptomInflammationENOS uncouplingOxidative phosphorylationEndothelial dysfunction; ENOS uncoupling; Kindling radicals; Low-grade inflammation; Mitochondria; NADPH oxidase; Oxidative stress; Redox cross talkLow-grade inflammationCatalysisRedox cross talkInorganic Chemistry03 medical and health sciencesmedicineDiabetes MellitusAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyInflammationNADPH oxidaseOrganic ChemistryNADPH Oxidasesmedicine.diseaseAngiotensin II030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Oxidative stressbiology.proteinKindling radicalsReactive Oxygen SpeciesOxidative stress
researchProduct

New insights into aerosol and climate in the Arctic

2018

Abstract. Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013 . (1) Unexpectedly …

0301 basic medicineArctic haze010504 meteorology & atmospheric sciences15. Life on landMineral dustAtmospheric sciences01 natural sciencesSea surface microlayerAerosol03 medical and health sciences030104 developmental biologyDeposition (aerosol physics)Arctic13. Climate actionMelt pondIce nucleusEnvironmental science0105 earth and related environmental sciences
researchProduct

Diabetes and Metabolism Disorders Medicinal Plants: A Glance at the Past and a Look to the Future 2018

2018

0301 basic medicineArticle SubjectTraditional medicinelcsh:Other systems of medicineBiologylcsh:RZ201-999medicine.diseaseMetabolism disorder03 medical and health sciencesEditorial030104 developmental biologyComplementary and alternative medicineDiabetes mellitusmedicineMedicinal plantsEvidence-Based Complementary and Alternative Medicine
researchProduct